
1 September 1997 Delphi Informant

September 1997, Volume 3, Number 9

Delphi 3 DCOM
Building Multi-Tier Applications

Cover Art By: Tom McKeith
ON THE COVER
5     Delphi 3 DCOM — Jeremy Rule
DCOM (Distributed Component Object Model) lets an application use
objects almost anywhere. To understand how we can do this, it’s impor-
tant to illustrate why we would, with a little automotive analogy.

FEATURES
11   Informant Spotlight 
The Expert Tool Kit — Ray Lischner
The Open Tools API lets you add your own extensions, but can be tricky
to use. Learn how the Expert Tool Kit’s components and experts help you
dodge the pitfalls.

16   On the Net
MIME’s the Word — Gregory Lee
You downloaded code from the Informant site, and want to pass along
the .ZIP file using your home-brewed e-mail program. You need MIME,
as outlined in this third part of our e-mail series. 

20   DBNavigator
Creating Mailing Labels — Cary Jensen, Ph.D.
More QuickReport techniques: how to create mailing labels, master-
detail reports, and custom report previewers, as well as how to generate
reports on-the-fly.

27   Greater Delphi
Maintaining Your Maintenance-Free Database — Bill Todd
InterBase databases require little maintenance, but what if you have
transactions rolled back or in limbo? Awareness of such problem events
and their fixes can help keep your system in the pink.

31   Columns & Rows
The Paradox Files: Part VI — Dan Ehrmann
Multi-user Paradox access is a balancing act: While a query is extracting
information, other users may be modifying the very same records. Here’s
how to minimize conflicts and maximize access. 

36   Delphi Reports
Extending QuickReport: Part II — Keith Wood
There’s more than one way to upgrade Delphi’s native reporting tool.
You can add discrete properties for each column, along with other
improvements to the last installment’s database grid.

41   At Your Fingertips
Dispatches from the Delphi Front — Robert Vivrette
Do the math: There are faster ways to calculate sine and cosine, and to
crunch integers. There’s also a trendy new way to crash! Catch up on
these and other front-line developments.

44   More At Your Fingertips
Design for Many Applications — John Gmutza
Many programmers think time is saved by quickly knocking out a routine,
then returning later to make it a reusable class. However, sometimes
“later” never comes. Here are succinct tips for avoiding this and other
sticky wickets.

47   Odds & Sods
Is It Really Disabled? — Paul Kimmel
When you disable a Delphi Panel or GroupBox, the controls on these
TWinControl components don’t appear disabled. Here’s a quick tip to help
you dodge the ire of harried users.

REVIEWS
48   Sentry Spelling Checker Engine

Product Review by Alan Moore, Ph.D.
53   InfoPower 3

Product Review by Bill Todd
59 Delphi 3 SuperBible

Book Review by Alan Moore, Ph.D.
59   Delphi 2 Developers’ Solutions

Book Review by Alan Moore, Ph.D.

DEPARTMENTS
2   Delphi Tools
4  Newsline
62   File | New by Richard Wagner



2 September 1997 Delphi Informant

Delphi
T O O L S

New Products 
and Solutions
Speech Solutions Ships Speech Recognition for Delphi

List Assist, a voice list box
with standard list box prop-
erties and behavior; Voice
Window, a replacement for
the standard text box that
accepts free dictation; and
Sonar Tool, a voice naviga-
tor that controls voice-
enabled objects, as well as
standard Windows menus
and sub menus. 
The complete package

includes Speech Solutions
Voice Tools software, a devel-
oper run-time version of the
IBM VoiceType Dictation
System for Windows, a noise
canceling microphone, docu-
mentation, and sample
applications.

Speech Solutions, Inc.
Price: US$299
Phone: (800) SPEECH-7 or 
(215) 643-2100
Fax: (215) 643-9175
E-Mail: info@speechsolutions.com
Web Site: http://www.speech-
solutions.com
RT Registration Control Available for Delphi 3

such as time- and use-based
evaluation periods with a sys-
tem clock backup control,
leased/rented software sup-
port, as well as more sophisti-
cated features, such as PC-
stamp copy protection or a
backup security file.  

RT Registration is available
for Delphi as a native VCL.

R&T Software
Price: Starts at US$59
Phone: (49) 5132-836021
E-Mail: info@rtsoftware.com
Web Site: http://www.rtsoftware.com
Multi-Edit Offers 
Delphi 3 Integration

American Cybernetics has
announced its Multi-Edit for Windows
now includes integration with Delphi
3. The Delphi 3 integration is part of
Multi-Edit’s Borland IDE Integration
Package, which also supports Delphi

1 and 2, as well as C++Builder. 
As with Multi-Edit’s integration with
Delphi 1 and 2, Delphi-specific syn-
tax highlighting, code templates, and

language support are provided.
Multi-Edit features such as columnar
blocking, collapsible editing, multi-

file search and replace, and side-by-
side synchronized file compare are

available as hotkeys.
For information, contact American
Cybernetics at (800) 899-0100 or

(617) 449-1440, or visit
http://www.multiedit.com.
DesignSystems Announces DSAppLock 1.1 for Delphi 

both environments.

DSAppLock enables
developers to add applica-
tion protection in less than
a minute. It allows develop-
ers to create demonstration
versions, as
well as pre-
vent time-
critical soft-
ware from
being used
beyond its
proper life
cycle.

DSAppLock
lets develop-
ers customize
an applica-
tion’s protec-
tion needs
based on date,
days since
installation,
number of
times run, or a customized
scheme. In addition, it can
automatically generate
unique codes to allow pro-
tected applications to be
unlocked. DSAppLock ships
with online Help, demon-
strations, sample applica-
tions, unlimited support,
and a 60-day money back
guarantee.

DSAppLock supports
Delphi 1, 2, and 3, as well as
C++Builder. Trial and regis-
tered versions can be down-
loaded from DesignSystems’
Web site.

DesignSystems
Price: US$139 for Delphi or
C++Builder editions; US$159 for
both editions.
Phone: (508) 888-4964
E-Mail: support@dsgnsystms.com
Web Site: http://www.dsgnsystms.com
Speech Solutions, Inc. is
now shipping ActiveX Voice
Tools, custom controls for
the IBM VoiceType
Dictation System version 3.0
speech recognition product.

This set of voice tools
enables Delphi users to add
speech recognition capabili-
ties to their applications.
Developers can drop the
controls into their Windows
applications, enabling free
dictation, voice command,
and voice control.

Voice Tools features Voice
Notator, a playback and
record control. Other con-
trols include Press Panel, a
3D-voice command button
and panel operated by
voice, keyboard, or mouse;
R&T Software has added
Delphi 3 compatible mod-
ules to its RT Registration
Control. The new features
include packages, support for
direct registration key valida-
tion from within GLBS
Wise Installation System’s
setup scripts, and DES-based
registration key generation. 

RT Registration Control is a
software protection library
whose function is to provide
a safe way to electronically
distribute software. The prod-
uct offers typical features
DesignSystems of East
Sandwich, MA has released
version 1.1 of DSAppLock
for Delphi and C++Builder,
providing component-based
application protection in



3 September 1997 Delphi Informant

Delphi
T O O L S

New Products 
and Solutions

HHooww  ttoo  PPrrooggrraamm  DDeellpphhii  33
Frank Engo

Ziff-Davis Press

IISSBBNN:: 1-56276-526-4
PPrriiccee:: US$39.99

(390 pages, CD-ROM)
PPhhoonnee:: (800) 428-5331 or 

(317) 581-3500
Delphi 2 Java Makes Delphi to Java Conversions Possible

Pascal classes and visual
forms to Java. 

Delphi 2 Java can produce
applications targeted to
both languages, or simply to
move applications entirely
to Java. It also con-
verts Delphi Object
Pascal code to C++
for C++Builder. 

PowerBBS Computing 
Price: US$99; registered
users will receive free
upgrades.
Phone: (516) 938-0506
Fax: (516) 681-3226
E-Mail: support@java-
delphi.com
Web Site: http://www.java-
delphi.com
Tamarack Supports Delphi 3 with Rubicon 1.4 

words in a field or document.

Searches can be performed
across multiple tables with
the new search controller
component. The tables being
searched need not have the
same field structures. 

All Rubicon components
are thread safe. This enables
indexing and searches to be
performed in the back-
ground. The Professional
Edition allows indexes to be
processed on multiple
processors and/or computers.

All the components include
full source code, and are
compatible with Delphi 1, 2,
and 3, as well as C++Builder.
Three editions of Rubicon

are available. The Standard

Edition is
designed for
small, medi-
um, and
large tables,
and sup-
ports single-
user appli-
cations, as
well as mul-
tiple simul-
taneous
searches. The Workgroup
Edition supports multiple
simultaneous updates to the
search table, visual controls,
thread support, and HTML
and RTF handling. The
Professional Edition supports
large tables, indexing on mul-
tiple computers or processors,
and multi-table searches.

Tamarack Associates
Price: Standard Edition, US$99;
Workgroup Edition, US$199; and
Professional Edition, US$299. All
products include free 1.xx updates and
support via e-mail.
Phone: (415) 322-2827
Fax: (415) 322-2827
E-Mail: info@tamaracka.com
Web Site: http://www.tamaracka.com 
PowerBBS Computing
has launched Delphi 2 Java,
a software tool that converts
Delphi applications to Java.
Delphi 2 Java allows pro-
grammers to integrate
Delphi Object Pascal code
and visual forms to the
Internet using Java. Delphi
2 Java does this by
inputting Delphi projects,
then converting the Object
Tamarack Associates has
updated Rubicon 1.4, adding
support for Delphi 3,
C++Builder, and TurboPower
Software Co.’s FlashFiler.

Rubicon technology per-
forms database searches by
indexing the words in a data-
base or files on a disk. The
end-user is then able to per-
form searches by entering
words or phrases. Rubicon
supports And, Or, Near, Not,
and Like search logic and
wildcards; searches may also
be iteratively narrowed or
widened. Search results may
be used to filter the search
table, navigate to matching
records, or create a match or
answer table in natural or
rank order.
Version 1.4 introduces two

new visual controls: Search
and Rich Edit. Search displays
a list of words and the number
of occurrences of the word in
the database as the user enters
a query. This may be com-
bined with on-the-fly search
execution to provide real-time
feedback. The Rich Edit con-
trol highlights the matching



4 September 1997 Delphi Informant

News
L I N E

Sep tember  1997
Borland Completes Equity Financing; Raises US$25 Million

financing for up to an addi-
tional US$25 million.

In the initial closing of
US$25 million, Borland
issued 495 Series B Shares
and warrants to purchase up
to 198,000 shares of the
company’s common stock.
Borland is obligated to issue
an additional 55 Series B
Shares and warrants for the
purchase of an additional
22,000 shares of common
stock. Subject to certain
conditions, including regis-
tration of the underlying
shares of the common stock,
Borland will receive an addi-
tional US$2.5 million from
such additional issuance. 
New IntraBuilder Client/Server 1.5 Ships

trol for directing users; and
the new BDE Administra-
tion tool makes it easier to
create and maintain data-
base connections.

Version 1.5 features
HTTP transactions that are
up to 25 times faster, as
well as a shared database
connection. It offers
enhanced Netscape ONE
support via LiveConnect for
extending applications with
Java; OLEnterprise for
building distributed appli-
cations and integrating lega-
cy systems; MIDAS
Business ObjectBroker
Development Server for
24x7 failover safety and
integration with Borland’s
Multitier Distributed
Application Services Suite;
and a Data Migration
Wizard for application scal-
ing and rapidly moving data
between database formats
and servers.

IntraBuilder users can
update native SQL Links
drivers for Oracle, Sybase,
Informix, IBM DB2, MS
SQL Server and InterBase.
This version also offers new
native drivers for Microsoft
Access and FoxPro.

A 30-day trial version of
IntraBuilder Client/Server
can be downloaded free-of-
charge for evaluation from
Borland Online at
http://www.borland.com.

Client/Server edition is
US$1,995. For more 
information or to place
orders, call Borland at
(800) 233-2444. 
Borland Announces
Borland C++Builder
for IBM AS/400
Scotts Valley, CA —

Borland has announced its
Borland C++Builder/400
Client/Server Suite for IBM
AS/400.

The C++Builder/400
Client/Server Suite is based
on Borland’s C++Builder
Client/Server Suite for
Windows 95 and Windows
NT and ClientObjects/400.
(The AS/400-compatible
connectivity and develop-
ment technology is licensed
by Borland from TCIS of
Paris, France.)  

C++Builder/400 combines
native connectivity to the
AS/400, the C++ compiler,
a reusable object-oriented
component library, and
visual design tools.

Delphi/400 Client/Server
Suite is available now and  
C++Builder/400
Client/Server Suite is
scheduled to be available
later in 1997. 

For more information, visit
Borland at http://www.-
borland.com/borland400/
or call (800) 233-2444. 
Free Delphi 3 Books 
and CD Giveaway

Nutshell Software has launched
http://www.Delphi3.com, offering

a drawing to win a copy of
Delphi 3, Client/Server. In addi-
tion, publishers such as Coriolis

Group are giving away free
books and magazine 

subscriptions. 
The www.Delphi3.com Web site

features Delphi resources, includ-
ing a Delphi Web Index (a

Delphi-specific search engine)
and Delphi programming articles

with source code.
The site also offers a Delphi utility

archive and other contests.
Scotts Valley, CA — Borland
reported the closing of the
first round of a privately
placed equity financing
arranged by the Promethean
Investment Group, LLC of
New York City. Borland
raised approximately US$25
million, net of issuance costs,
through the sale of a newly
created class of Series B
Convertible Preferred Stock
(“Series B Shares”) and war-
rants. Borland is subject to
certain conditions, and may
call for a second round of
San Jose, CA — Borland
announced IntraBuilder
Client/Server 1.5. English,
French, and German ver-
sions of IntraBuilder
Client/Server 1.5 are avail-
able for visually building
scalable, data-driven Web
applications that integrate
with existing database
servers and legacy informa-
tion systems, including
Oracle, Sybase, Microsoft
SQL Server, Informix, IBM
DB2, and InterBase.

IntraBuilder Client/Server
1.5 combines visual devel-
opment tools with an appli-
cation server, allowing
developers to build Web
applications for enterprise-
wide data sharing over
intranets, extranets, and the
Internet. The product sup-
ports the creation of thin-
client applications that can
run on a PC, Macintosh, or
UNIX Web browser. 

IntraBuilder employs a
server-side implementation
of JavaScript. It also sup-
ports most Internet stan-
dards, including HTML,
HTTP, CGI, NSAPI,
ISAPI, ActiveX compo-
nents, and Java applets, and
is compatible with
Microsoft and Netscape
Web browsers and servers. 

Key enhancements to ver-
sion 1.5 include enhanced
manageability. IntraBuilder
runs as an NT service for
higher performance and
enhanced security; cus-
tomizable error messages
give developers greater con-



5 September 1997 Delphi Informant

On the Cover
Delphi 3 / DCOM

By Jeremy Rule

Delphi 3 DCOM
Comparing a Miata, a Hummer, and a Mack Truck

Figure 1: A TimeCard object
implements an interface with
New and Save procedures, and
Hours, Pay, and Overtime prop-
erties. As long as the interface
ITimeCard remains the same,
clients can communicate with
the TimeCard server. 
One of the more significant features in Delphi 3 is its native support for
ActiveX technologies. Now Delphi programmers can write ActiveX

controls, servers, and documents that are compatible at a binary level with
servers written in compilers such as Visual Basic 5.
ActiveX, based on Microsoft’s COM
(Component Object Model) architecture,
breaks applications into smaller, reusable
components. Because COM provides inter-
nal support for version information, lifetime
information, and standard data types, build-
ing a component can be easy. Then, with the
components built, programmers (and some-
times users) can simply assemble applications
from a stock of available components.

Taken one step further, DCOM (Distributed
COM) involves writing an application using
objects that could be running on another
machine on the network. To understand how
we can do this, it’s important to understand
why we would do this.
Multi-tier Architecture
Distributed multi-tier architecture presents an
attractive solution to developers who need to
maintain large-scale systems or divide time-
consuming, specialized tasks among many pow-
erful computers. Creating a multi-tiered system
first involves defining standard interfaces for
each logical level, or tier. The functions of the
tier are then written as components that can be
maintained and upgraded independently. One
of the most popular uses of this architecture is
with databases. Delphi includes ClientDataSet,
RemoteServer, and Provider components specif-
ically for multi-tiered database development.
The database application can be broken into
three or more logical tiers that handle the user
interface, business rules, and persistent storage.
In Figure 1, a simple TimeCard object imple-
ments an interface that contains the proce-
dures New and Save, and the properties
Hours, Pay, and Overtime. The “I” prefacing
“TimeCard” is a naming convention that
denotes an interface. As long as the interface
ITimeCard remains the same, clients can
communicate with the TimeCard server. The
benefits of this model are realized when the
business logic changes.

Let’s say a Set_Hours method is invoked
whenever the Hours property is changed. In
the Set_Hours method, Overtime is calculated
to be 1.5 times the Hours over 40. Admini-
stration decides Overtime should be calculat-
ed as 2.0 times the hours over 40. Instead of
re-deploying client applications to the users,
or changing a stored procedure in the data-
base, the TimeCard server could be altered.
In an over-simplified example such as this,
changing a stored procedure might be more
reasonable, but when the business rules
become exceedingly complex and when the
servers need to communicate with other
servers, the multi-tiered approach begins to
make sense. 

Another benefit of DCOM is the ability to
write distributed systems. COM objects can be
deployed on the same machine as the client, or
on any machine on the network. No changes
need to be made to the server or client. This
means that powerful workstations running
COM servers can perform the complex 



Figure 2: One benefit of DCOM is the ability to write distributed
systems, allowing multiple PCs to perform functions in parallel.
In this example, four machines are rendering a ray-traced scene.

On the Cover
calculations in parallel. In Figure 2 for example, a client
application uses four workstations to render a ray-traced
scene. The workstations are all exposing the IRender inter-
face with a Render function, which takes the scene descrip-
tion and a block of lines to render, then returns a partial
image that can later be concatenated by the client to form a
complete image. Render time will be cut significantly on a
large and complex scene, because all four computers are
doing the work.

To make this system more robust, one could add a
RenderManager server whose only function is to divide
the image into equal parts, and distribute the task among
the least-busy machines. The client would only have to
communicate with the RenderManager, and not care
which machines were available for work. Of course, ren-
dering an image is just one example of what distributed
computing with DCOM could be used for. 

To further elaborate using DCOM, we’ll create several exam-
ple ActiveX servers. We’ll create an ICar interface and imple-
ment it in three ActiveX servers. The first server will be a
.DLL, the second an .EXE, and the third an .EXE that will
be put on a remote machine. Last, we’ll write a test program
to benchmark calls to all three servers.
The Car Type Library
The first step will be to create a Car type library that
defines the ICar interface. Type libraries have no implemen-
tation details, only interface definitions. From Delphi 3’s
menu, select File | New | ActiveX | Type Library. Fill in the
Name property with Car; then note the GUID property
that’s been completed for you. The GUID, a 128-bit
Globally Unique Identifier, is generated by an algorithm
that guarantees uniqueness (i.e. world-wide past, present,
and future). Pressing the Register button will register ICar
under the unique GUID, and you can have peace of mind
that no other software installed will clobber your server. 
Press the Interface button to create a new
interface. Name it ICar. Press the Property

button and add a “Name” property to
ICar. In the declaration attribute of Name,
change Integer to WideString. Press the
Method button to add a method to ICar.
Call it Drive.

When you’re done, the type library
should look like that in Figure 3. Save
the type library as Car.tlb, and press the
Register button to register the class.
Figure 3: The Car.tlb type library.
Miata: An In-Process Server
An in-process server is an ActiveX server that
runs in the same process space as the client
application. Function calls execute quickly,
because function parameters don’t have to be
packed, sent, and unpacked over process
boundaries, or even machine boundaries.
6 September 1997 Delphi Informant
To create the Miata server, select File | New | ActiveX | ActiveX

Library. Save the project as MiataLibrary.dpr. Now that you
have a library to host the server, select File | New | ActiveX |

Automation Object. When Delphi prompts you for a class
name, use Miata. Leave the instancing set to Multiple Instance.
Close the Type Library editor that will display automatically.
Save this unit as Miata.pas.

From the Project menu, click Import Type Library and choose
Car Library (Version 1.0). Complete the TMiata declaration:

type
TMiata = class(TAutoObject, IMiata, ICar)
private
FName : WideString;

protected
function Get_Name: WideString; safecall;
procedure Set_Name(const Value: WideString); safecall;
procedure Drive; safecall;
property Name: WideString read Get_Name write Set_Name;

end;



On the Cover
By adding ICar to the class declaration, we are obligated
to implement the whole ICar interface. ICar should be
thought of as a contract with a Name property and a Drive
method. By providing functionality for the whole inter-
face, we have fulfilled the contract. strName is a private
variable to keep track of the Name property.

Now complete the body of each function:

function TMiata.Get_Name: WideString;

begin
Result := FName;

end;

procedure TMiata.Set_Name(const Value: WideString);

begin
FName := Value;

end;

procedure TMiata.Drive;

begin
ShowMessage('Driving a Miata');

end;

Normally we wouldn’t want to put user-interface code in a
server; if the server were ever moved to another machine,
no one would be available to respond to the dialog boxes.
However, for illustration and debugging purposes, a user
interface is sometimes needed.

Make sure Dialogs and Car_TLB have been added to the
uses statement, and compile the project (see Listing One
on page 9). Finally, select Register ActiveX Server from 
the Run menu to make the Miata server available to
other applications.
Hummer: An Out-of-Process Server
The second server, Hummer, will be an out-of-process
server. Out-of-process servers (.EXEs) have the advantage
of running in their own security context and will not
crash if their clients go down. Clients and out-of-process
servers can still communicate even if they are of different
“bit-ness;” 16-bit, 32-bit, or (theoretically) 64-bit clients
and servers should be able to communicate. The major
disadvantage of an out-of-process server, as we’ll see later,
is that it must communicate with the client over a process
boundary that makes method calls considerably slower.

The first step in making the Hummer server is to create a
new application and hide the main form. Open the project
source and add:

Application.ShowMainForm := False;

before the Application.Initialize statement. Now we have a
formless project. Save the project as HummerServer.dpr.
Add automation support with File | New | ActiveX |

Automation Object. Delphi will prompt you for a class
name (choose Hummer) and automatically  display the
Type Library editor. Close the Type Library editor and
import the Car type library the same way we did with the
Miata server.
7 September 1997 Delphi Informant
Implement the ICar interface in the THummer class:

type
THummer = class(TAutoObject, IHummer, ICar)

FName : WideString;

protected
function Get_Name: WideString; safecall;
procedure Set_Name(const Value: WideString); safecall;
procedure Drive; safecall;
property Name: WideString read Get_Name write Set_Name;

end;

and each function:

function THummer.Get_Name: WideString;

begin
Result := FName;

end;

procedure THummer.Set_Name(const Value: WideString);

begin
FName := Value;

end;

procedure THummer.Drive;

begin
ShowMessage('Driving a hummer');

end;

Save the unit as Hummer.pas and compile. Again, don’t
forget to add Dialogs and Car_TLB to the uses statement
(see Listing Two on page 9). To register the Hummer serv-
er for use with other projects, run the project with a
/REGSERVER parameter. All out-of-process servers
implement /REGSERVER and /UNREGSERVER para-
meters behind the scenes.

You now have an Automation server that will dispense
Hummer objects. 
MackTruck: A Remote Server
The final server, MackTruck, will be an out-of-process server
that runs on another machine. Developing the remote server
will be no different than developing a local server. This is
important! Later, when you’re tweaking the system for perfor-
mance, you can move servers to different locations without
redesign. The physical layout should have no bearing on the
logical design. 

Remote servers have similar advantages and disadvantages
to out-of-process servers. Method parameters must be
packed and sent from a proxy on the local machine to a
stub on the remote machine. Network constraints can also
hurt the performance of a remote server. However, remote
servers add a physical layer of abstraction between client
and server. A new server needs only to be distributed to one
spot, rather than to each client machine. Remote servers
also let you distribute the workload over many powerful
computers (as described earlier).

Writing the MackTruck server is similar to writing the
Hummer server. Start a new project, hide Form1, and import
the Car type library. Add automation support with File | New

| ActiveX | Automation Object, and call the server MackTruck.



On the Cover
Close the Type Library editor and have the TMackTruck class
implement the ICar interface:

type
TMackTruck = class(TAutoObject, IMackTruck, ICar)
private

FName : WideString;

protected
function Get_Name: WideString; safecall;
procedure Set_Name(const Value: WideString); safecall;
procedure Drive; safecall;
property Name: WideString read Get_Name write Set_Name;

end;

Complete the methods:

function TMackTruck.Get_Name: WideString;

begin
Result := FName;

end;

procedure TMackTruck.Set_Name(const Value: WideString);

begin
FName := Value;

end;

procedure TMackTruck.Drive;

begin
ShowMessage('Driving a Mack Truck');

end;

Save the project as MackServer.dpr, and the unit as
MackTruck.pas (see Listing Three on page 10). Compile and
run with the /REGSERVER switch. Now we have a
MackTruck server set up to run locally. 

There are two ways to make the server remote. The first is
to use Delphi’s CreateRemoteComObject function. The sec-
ond, a more visual way, is to use Dcomcnfg.exe, which
ships with Windows NT, or can be downloaded with the
8 September 1997 Delphi Informant

Figure 4: The MackTruckObject and HummerObject applica-
tions now appear in the list.
DCOM for Windows 95 SDK available at http://www.-
microsoft.com/oledev. 

For the purposes of this example, we’ll use Dcomcnfg.exe to
make the MackTruck server remote. Start Dcomcnfg from the
command line, or with Start | Run. In the list of applications, you
should see the MackTruckObject and HummerObject applications
available (see Figure 4). Select MackTruckObject and use the
Properties dialog box to specify on which computer you would
like the object to be created. You can either specify a UNC name,
an IP address, or a host name.

Next, copy the MackServer.exe file to the remote machine
and run “MackServer.exe /REGSERVER” on the remote
machine. This registers the MackTruckObject as available
for automation. Run Dcomcnfg.exe on the remote
machine and verify that MackTruckObject is present.
Within the properties pages for MackTruckObject you can
specify security settings, including who can create objects.
The Identity tab lets you specify which account runs the
server. Make sure the local user has an account on the
remote machine if you have The launching user chosen.
Copy car.tlb to the remote machine and use the Type
Library editor to register the type library. If the Type
Library editor is not available on the remote machine, you
can build the Car type information into a DLL and move
it to the remote machine. Then, use REGSVR32.EXE
(which ships with Windows NT and Windows 95) to reg-
ister the type library.
Figure 5: The results of the test show that an in-process server is
much faster than an out-of-process server, which is, in turn,
quicker than the remote server.



On the Cover
Moving back to the local machine, the final step in this project
is to create a test program that will use all three car servers. The
test application will simply create a car of each type, set its name
property, and read the name property 2,000 times. By doing this
we can see the performance differences between in-process, out-
of-process, and remote servers, then graph the results. 
Speedway: Testing Each Car
Create a new application, save it as SpeedWay.dpr, and save the
main form as Main.pas. From the Component menu, use
Import ActiveX Control to import a Microsoft Chart Control.
(Note: TChart will work similarly, but in the spirit of ActiveX,
this example uses the Microsoft Chart Control). Drop an
MSChart component on the main form and name it Chart.
To import the types, add Car_TLB, Miatalibrary_TLB,
Hummerserver_TLB, and Mackserver_TLB to the uses state-
ment of Main.pas.

Write a TestCar function, as shown in Listing Four on page10,
to time the speeds of each car and graph the results. Notice
that TestCar shows evidence of COM’s polymorphism because
it receives ICar instead of a specific car type. If the car’s Drive
procedure were called, the car object would show the appropri-
ate dialog box. 

The results of the test (see Figure 5) show that an in-process
server is much faster than an out-of-process server, which is, in
turn, quicker than the remote server. The bottom line: The
Miata is fast and lean, but if you’re going to be in an accident,
you might want to pick a larger, heavier car. This is similar to a
.DLL, which offers the quickest server, but will crash along with
any clients it’s serving. The Hummer is secure and robust, but
considerably slower — much like an .EXE. The remote .EXE is
like a Mack truck; it can do a lot of work over a long distance. 
Conclusion
Although the example shown here is trivial, there are many situ-
ations where Delphi and DCOM will prove useful. Distributed
and multi-tiered systems are becoming more popular, and
Delphi 3 offers excellent support for DCOM. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\SEP\DI9709JR.

Jeremy Rule lives in Houston, TX with his wife and two parrots. He works for
Enron Capital and Trade writing multi-tiered systems. Jeremy can be reached at
(713) 853-3501, or via e-mail at jrule@ect.enron.com.
9 September 1997 Delphi Informant
Begin Listing Two — Hummer.pas
unit Hummer;

interface

uses
ComObj, HummerServer_TLB, Car_TLB, Dialogs;

type
THummer = class(TAutoObject, IHummer, ICar)

FName: WideString;

protected
function Get_Name: WideString; safecall;
procedure Set_Name(const Value: WideString); safecall;
procedure Drive; safecall;
property Name: WideString read Get_Name write Set_Name;

end;

implementation

uses ComServ;

function THummer.Get_Name: WideString;

begin
Result := FName;

end;

procedure THummer.Set_Name(const Value: WideString);

begin
FName := Value;

end;

procedure THummer.Drive;

begin
ShowMessage('Driving a hummer');

end;

initialization
TAutoObjectFactory.Create(ComServer, THummer,

Class_Hummer, ciMultiInstance);

end.

End Listing Two
Begin Listing One — Miata.pas
unit Miata;

interface

uses
ComObj, MiataLibrary_TLB, Car_TLB, Dialogs;

type
TMiata = class(TAutoObject, IMiata, ICar)
private
FName: WideString;

protected
function Get_Name: WideString; safecall;
procedure Set_Name(const Value: WideString); safecall;
procedure Drive; safecall;
property Name: WideString read Get_Name write Set_Name;

end;

implementation

uses ComServ;

function TMiata.Get_Name: WideString;

begin
Result := FName;

end;

procedure TMiata.Set_Name(const Value: WideString);

begin
FName := Value;

end;

procedure TMiata.Drive;

begin
ShowMessage('Driving a Miata');

end;

initialization
TAutoObjectFactory.Create(ComServer, TMiata,

Class_Miata, ciMultiInstance);

end.

End Listing One



1

On the Cover
Begin Listing Three — MackTruck.pas
unit MackTruck;

interface

uses
ComObj, Dialogs, MackServer_TLB, Car_TLB;

type
TMackTruck = class(TAutoObject, IMackTruck, ICar)
private

FName: WideString;

protected
function Get_Name: WideString; safecall;
procedure Set_Name(const Value: WideString); safecall;
procedure Drive; safecall;
property Name: WideString read Get_Name write Set_Name;

end;

implementation

uses ComServ;

function TMackTruck.Get_Name: WideString;

begin
Result := FName;

end;

procedure TMackTruck.Set_Name(const Value: WideString);

begin
FName := Value;

end;

procedure TMackTruck.Drive;

begin
ShowMessage('Driving a Mack Truck');

end;

initialization
TAutoObjectFactory.Create(

ComServer,TMackTruck,Class_MackTruck,ciMultiInstance);

end.

End Listing Three
Begin Listing Four — Main.pas
unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, OleCtrls, Car_TLB, Miatalibrary_TLB,

Hummerserver_TLB, Mackserver_TLB, MSChartLib_TLB;

const
ROUNDTRIPS = 3000;

type
TfrmMain = class(TForm)

Chart: TMSChart;

procedure FormShow(Sender: TObject);

private
FMiata: Miata;

FHummer: Hummer;

FMackTruck: MackTruck;

function TestCar(car: ICar; iTrips: Integer): Real;

end;

var
frmMain: TfrmMain;

implementation

{$R *.DFM}
0 September 1997 Delphi Informant
procedure TfrmMain.FormShow(Sender: TObject);

var
MiataTime,

HummerTime,

MackTime: Real;

begin

// Create the three cars.
FMiata := coMiata.Create;

FHummer := coHummer.Create;

FMackTruck := coMackTruck.Create;

// Test each one.
MiataTime := TestCar(FMiata as ICar, ROUNDTRIPS);

HummerTime := TestCar(FHummer as ICar, ROUNDTRIPS);

MackTime := TestCar(FMackTruck as ICar, ROUNDTRIPS);

// Chart the results.
with Chart do begin

Row := 1;

Data := '1';

Row := 2;

Data := FloatToStr(HummerTime / MiataTime);

Row := 3;

Data := FloatToStr(MackTime / MiataTime);

end;

end;

function TfrmMain.TestCar(car: ICar; iTrips: Integer): Real;

var
i: Integer;

nStart: Real;

sName: string;
begin

nStart := Now;

for i := 1 to iTrips do
sName := car.Name;

Result := Now - nStart;

end;

end.

End Listing Four



11 September 1997 Delphi Informant

Informant Spotlight
Delphi / Open Tools API

By Ray Lischner

The Expert Tool Kit
A Collection of Components and Experts
to Help You Create Experts and Wizards 
The Open Tools API lets you add your own extensions to Delphi, e.g.
insert new menu items in Delphi’s menu bar, define form and project

wizards for creating new modules and applications, or write add-in experts
to do just about anything. The Open Tools classes can be tricky to use,
however. You must define all your classes correctly, create and free objects
at the appropriate times, and clean up properly when Delphi shuts down or
unloads an expert.
Make a mistake, and you can crash Delphi.

Writing an Open Tools expert would be easi-
er if you could take advantage of Delphi’s
component model, i.e. create components
that help you write your own experts. The
Expert Tool Kit does just this — it’s a collec-
tion of components and experts to help you
write new experts and wizards. This article
outlines how the Expert Tool Kit works, and
how you can use it for writing experts.
Introducing Experts
Before jumping into the Expert Tool Kit, let’s
take a minute to review the Open Tools API.
Open Tools is a set of classes for extending
Delphi’s integrated development environ-
ment (IDE). You can add items to Delphi’s
menu bar, define experts to create new
forms, units, and projects, edit the files in a
project, edit component properties, or modi-
fy a project’s resources. Because the Open
Tools API is a set of Delphi classes, you can
write your extensions in Delphi — you don’t
need to learn a separate scripting language (as
is the case with many other development
products).

One drawback of the Open Tools API is its
complete lack of documentation — all that
ships with Delphi is a set of source files that
declare interface classes. These are found in
Delphi’s \Source\Toolsapi directory. The
comments are mostly correct, and can tell
you much about the Open Tools API. Start
with ExptIntf.pas, which declares the expert
interface class. ToolIntf.pas declares
TIToolServices, which is the primary link
between an expert and Delphi’s IDE.
EditIntf.pas declares several interface classes
for accessing information about source files,
forms, and resources.

Every Open Tools expert must declare an
expert interface class, inheriting from
TIExpert. This class tells Delphi what kind of
expert you are creating, the expert’s name, an
icon to use in the Object Repository, and
other similar information. When you derive
your class from TIExpert, make sure you
override every method.

When the user invokes an expert, Delphi
usually calls the expert’s Execute method,
which can create a new form or project;
open, close, and save files; edit a source
file; create components; modify a compo-
nent’s properties; and so on. The Open
Tools API defines several interface classes
that give your expert access to a project
and its forms, components, source files,
and resources.



Figure 1: Source code for the Expert DLL.

library LibWiz;

uses
ShareMem,

ExptIntf,

EtkInit,

NewLib in 'NewLib.pas' { NewLibraryWizard: TEtkModule },
NewUnit in 'NewUnit.pas' { NewUnitWizard: TEtkModule };

{$R *.RES}

exports InitializeExperts name ExpertEntryPoint;

begin
Application.CreateForm(TNewLibraryWizard,

NewLibraryWizard);

Application.CreateForm(TNewUnitWizard, NewUnitWizard);

Application.Run;

end.

Informant Spotlight
Writing an expert at the level of TIExpert is roughly akin to
writing a Windows application by using the Win32 API.
Delphi’s component model makes your job easier when you
create Windows applications, just as the Expert Tool Kit
makes it easier to write experts and wizards.

For example, to create a new unit or form, you must use a
module creator or the undocumented Proxies unit. To use a
module creator, you must derive a class from TIModuleCreator
and override all its methods. Most module creators have sever-
al one-line methods, often returning an empty string. This can
be tedious, and is error-prone if you forget to override one
method.

The Expert Tool Kit simplifies module creation with its
TEtkModuleCreator component. Instead of overriding abstract
methods, you set the component’s properties and event han-
dlers. The component supplies suitable default values for its
properties, and you can easily set new property values. This
component is just one way the Expert Tool Kit helps you
write experts and wizards. Let’s take a look at the whole pack-
age to understand how the Expert Tool Kit works.
Using the Expert Tool Kit
To install the Expert Tool Kit, run ETK10.EXE (see the end
of this article for download details). This set-up program
installs the packages and source files into a directory of your
choice. It automatically installs the wizards and components
and adjusts Delphi’s search path to include the Expert Tool
Kit files. The next time you run Delphi, you’ll be able to use
the Expert Tool Kit.

The first step for using the Expert Tool Kit is simple.
From Delphi’s menu bar, choose File | New, select the
Projects page, then double-click the Expert DLL Wizard
icon. The wizard inquires what style of expert you want to
create: Add-in, Form, Project, or Standard. Then it creates
a new DLL project, with an expert .DPR file and an
expert module. An expert module represents a single
expert, and its properties correspond to the methods of
TIExpert. When you use the Expert Tool Kit, you no
longer need to concern yourself with the TIExpert class.
Simply create an expert module and set its properties. The
Expert DLL creates the expert modules and automatically
registers the experts for you.
Expert DLL
The Expert DLL Wizard creates a library project (.DPR) file.
This library exports a library initialization function, which
Delphi requires of every expert library. The main body of the
library file automatically creates the expert modules, so the
DLL can register the experts in its initialization function.

Ordinarily, Delphi reserves the automatic creation of forms
and data modules for applications (.EXE projects). By adding
the statement:

Application.Run;
12 September 1997 Delphi Informant
to the main library file, however, the Expert DLL Wizard
tells Delphi that that library will create forms and data mod-
ules automatically. When you add a new form or data mod-
ule (such as an expert module) to the project, Delphi’s IDE
adds them to the library’s main body of code the same way it
does for applications. Figure 1 shows what the Expert DLL’s
source code looks like.

The Expert DLL project treats the Application object some-
what differently from a real application. In an expert, the
Application object monitors the expert modules that your
project automatically creates. When Delphi loads and regis-
ters the DLL, it calls a library initialization function, which
iterates through the list of experts in the Application object
and registers all the expert modules’ experts. To prevent
this use of Application from interfering with your experts,
the EtkInit unit declares Application this way. Your expert
never needs to use EtkInit, so you can use Application nor-
mally in the rest of your expert.

Note that only a library can create expert modules auto-
matically. If you use a package for your expert, you will
need to create a Register procedure that calls each expert
module’s CreateAndRegister method. This class method cre-
ates the expert module, assigns the reference to a variable,
and registers the expert. Following is an example of calling
CreateAndRegister:

procedure Register;

begin
TEtkModule1.CreateAndRegister(EtkModule1);

end;
Expert Module
The Expert DLL Wizard automatically creates an expert
module, and you can add any number of additional expert
modules. Each expert module is a single expert. By using
expert modules, you do not need to concern yourself with
the TIExpert class. Instead, simply set properties of the
expert module, and the Expert Tool Kit takes care of 
the rest.



Informant Spotlight
To create a new expert module, choose File | New; then on
the Data Modules page, double-click Expert Module. The
Expert Module Wizard asks what style of expert you want to
create, then creates a new expert module of that style, with
suitable property values.

The expert style stipulates how the user invokes the expert:
The Object Repository lists form and project experts in the
New Items dialog box. A project expert typically creates a new
application or library project; a form expert creates a form,
unit, or other file. Delphi lists standard experts in its Help

menu. An add-in expert has no predefined user interface.
Instead, it is up to you to decide how the user interacts with
an add-in expert.

After you have chosen an expert style, the Expert Tool Kit cre-
ates a blank expert module. You can set any of the expert mod-
ule’s properties in the Object Inspector. For example, if you
want a standard expert, Delphi needs to know the menu cap-
tion for the menu item it will add to its Help menu. You can
also set the state of this menu item to be enabled or disabled,
and to have an optional check mark. A form or project expert
needs an icon, comment, and author name to list in the Object
Repository. The Expert Module Wizard chooses default values
for these properties, such as a default icon for project and form
experts, but you will want to change some of them to suit your
specific needs.

Every expert needs a name, which is the name the user sees
for the expert, and an ID string, which is a unique identi-
fier. The user never sees the ID string, so you can sacrifice
readability for guaranteeing uniqueness. By convention, an
ID string has the form “author.name”. The expert module
chooses defaults for all of these properties, so change only
those you feel you must.

The expert module automatically takes care of defining the
expert interface and registering the expert with Delphi.
When Delphi unloads the expert, it automatically frees the
expert module, which frees all of its components. The
automatic creation of the expert module works only in an
expert project, that is, a DLL that you create with the
Expert DLL Wizard.

The expert module is a custom data module, which is a new
feature in Delphi 3. A custom form or data module can pub-
lish properties that are visible in the Object Inspector. Use the
expert module the same way you would a data module. For
example, you can drop any non-visual component on the
expert module. The most useful components are those in the
Expert Tool Kit, which you can find on the Experts tab of the
Component palette.
Components
The Expert Tool Kit comes with three components:
TEtkMenuItem, TEtkModuleCreator, and TEtkProjectCreator.
The first adds a menu item to Delphi’s menu bar. The next
two create new modules and new projects. Let’s take a closer
look at each of these components.
13 September 1997 Delphi Informant
The expert menu-item component, TEtkMenuItem, creates a
menu item in Delphi’s menu bar. Its properties closely match
the properties of an ordinary menu item. The difference is
that an expert adds a menu item to Delphi’s menu bar, and
you must tell it where the new menu item belongs. Set the
InsertName property to the name of an item that is already in
the menu bar, and set InsertAction to say whether the new
item goes before or after the target item, or whether to add
the new item in a submenu (iaChild ).

The Expert Tool Kit defines a property editor for the
InsertName property. The property editor defines a dialog
box where you can easily choose a menu item from a fac-
simile of Delphi’s menu bar. Set any of the other proper-
ties to set the menu item’s flags. Set the component’s
OnClick event handler to perform your expert’s work. You
can add menu items to any expert, as well as any number
of menu items.

The Expert Tool Kit includes two other components: a mod-
ule creator and a project creator. You can use these compo-
nents to create a new unit or form, or to create a new project.
[For more information about module and project creators,
refer to Lischner’s article “What’s New with Experts?” in the
July 1997 issue of Delphi Informant.] Using these components
is much easier than writing your own creator classes.

The TEtkProjectCreator component creates a new Delphi
project. You can create a default application or library, i.e.
the same project that Delphi creates when you choose
Application or DLL from the New Items dialog box. To create
a default application, set the project creator’s Flags property
so that cpApplication is True, set FileName and FileSystem to
empty strings, and set Existing to False. For the default
library project, set cpLibrary to True. You’ll probably want
to set cpCanShowSource to True so Delphi will show the
project’s source file.

If the project files exist, set Existing to True. Otherwise, the
value of NewProjectSource is the source code for the new
.DPR file. The project creator uses this string to call Format,
passing the project name as the sole argument. Thus, you will
usually start the source code string with program %s; or
library %s;. The default value for this property is the
source code for a default application.

When Delphi creates the new project, it calls back to the
project creator. The Expert Tool Kit invokes corresponding
event handlers in the creator component. After creating
the project’s source file, the Expert Tool Kit calls the
OnDefaultModule handler, which you can set to create new
modules (units or forms) for your project. In the
OnProjectResource event handler, you can add resources to
your project. If you do not set this event handler, Delphi
will supply its default MAINICON resource. Finally, the
Expert Tool Kit calls the OnModuleCreated event handler.
If you want to do anything special with the new project,
you can use the module interface. See Delphi’s EditIntf.pas
file for more information about module interfaces.



unit EtkProject;

{ Expert tool kit. Expert Project expert. This expert
module creates a library project for a Delphi 3
expert. It primes the expert with an expert module. }

interface

uses Windows, SysUtils, Classes, Graphics, Dialogs, Forms,

ExptIntf, ToolIntf, EditIntf, Etk;

type
TEtkProjectWizard = class(TEtkModule)

ProjectCreator: TEtkProjectCreator;

ModuleCreator: TEtkModuleCreator;

procedure EtkProjectWizardExecute(Sender: TObject);

procedure ProjectCreatorDefaultModule(Sender: TObject);

procedure ModuleCreatorFormCreated(Sender: TObject;

Form: TIFormInterface);

private
{ private declarations }
Style: TExpertStyle;

public
{ public declarations }

end;

var
EtkProjectWizard: TEtkProjectWizard;

implementation

uses EtkModule, EtkStyleChooser;

{$R *.DFM}

procedure TEtkProjectWizard.EtkProjectWizardExecute(

Sender: TObject);

begin
if ChooseExpertStyle(Style) then

ProjectCreator.ProjectCreate

end;

procedure TEtkProjectWizard.ProjectCreatorDefaultModule(

Sender: TObject);

begin
ModuleCreator.ModuleCreate

end;

Informant Spotlight
The TEtkModuleCreator component is similar to
TEtkProjectCreator, except that it creates a single file, pos-
sibly adding it to the current project. The module creator
has many more flags than the project creator. Read
Delphi’s ToolIntf.pas file for a description of the
TCreateModuleFlags choices.

The default value for the NewModuleSource property is the
source code for a new form. If you want the same source
code that Delphi uses when you choose File | New Form, you
can leave this property alone. If you want to create a unit
without a form, remove the line {$R *.DFM} from the file.

As with the project creator, the module creator passes the
NewModuleSource string to Format. The three arguments
passed to Format are the unit name, form name, and ancestor
name. In other words, %0:s is the unit name, %1:s is the form
name, and %2:s is the ancestor name. To obtain the form type,
use T%1:s. The ancestor of an ordinary form is Form.

Set the other properties of the module creator according to
your needs. The default property values usually work quite
well. If you want to create a data module, set the Ancestor
property to DataModule. To use form inheritance, set
Ancestor to the name (not the type) of the ancestor form.
When your expert creates the new module, the ancestor form
must be open. (See ToolIntf.pas to learn how to open a file in
the IDE.) To create a module, call the module creator’s
ModuleCreate method. If the source code contains a .DFM
directive, Delphi will call the OnFormCreated event handler.
You can add components to the form, using the form and
component interfaces (which are declared in EditIntf.pas).
After Delphi has created the new unit and form, the module
creator calls its OnModuleCreated event handler, which you
can use to save the new module (or do anything else with it).
Figure 2: Creating an expert is this easy.

procedure TEtkProjectWizard.ModuleCreatorFormCreated(

Sender: TObject; Form: TIFormInterface);

begin
InitializeForm(Form, Style);

end;

end.
Road Test
The best way to learn how to use the Expert Tool Kit is to try
it. Create an expert DLL, and choose the Standard style. Set the
MenuText property to something suitable, such as Testing....
Set the OnExecute event handler to show a simple message:

procedure TEtkModule1.EtkModule1Execute(Sender: TObject);

begin
ShowMessage('This expert works!')

end;

Now save and compile your new project. Exit Delphi and
run REGEDIT to register your expert. Create a new string
entry under HKEY_CURRENT_USER\Software\Borland\-
Delphi\3.0\Experts. Use any unique identifier, such as your
expert’s ID string, for the new entry name. Set the entry
value to the complete path to your DLL. Run Delphi again,
and you’ll see a new menu item under Delphi’s Help menu.
Choose this menu item and Delphi will run your expert,
showing you the message. 

Now it’s time to take a look under the hood and see how the
Expert Tool Kit works.
14 September 1997 Delphi Informant
Inside the Expert Tool Kit
The Expert Tool Kit is the easiest way to create experts in
Delphi 3. Therefore, you should not be surprised to learn
that I used the Expert Tool Kit to create itself. (Strictly speak-
ing, the Expert Tool Kit evolved; for each iteration, I used
the earlier version to write the next generation.)

The expert module is a custom data module. The data module
publishes properties that correspond to the methods of
TIExpert. The expert module works with a helper class,
THelperExpert, which inherits from TIExpert and communi-
cates with an expert module to obtain the information it needs.
Each expert module creates and registers a separate instance of
THelperExpert. Each THelperExpert object has an Owner prop-



Figure 3: The organization of experts and components in the
Expert Tool Kit.

Informant Spotlight
erty that refers back to the expert module that created it. When
Delphi unloads the expert, the helper expert releases the expert
module. When Delphi shuts down, it frees the module first, so
the expert module clears the Owner property in the helper
expert (so the expert doesn’t try to free the module twice).

A form expert (Expert Module Wizard) creates the custom
data module. Of course, this wizard uses an expert module to
create its output, which is a new expert module. The wizard
uses a module creator component to create the new expert
module and its source code. The EtkModule.pas file defines
the Expert Module Wizard. Most of the work in this file is
setting the default properties of the new module according to
the expert style.

The Expert DLL Wizard also uses the Expert Tool Kit. The
Expert DLL Wizard is a project expert that creates the main
.DPR file (using a project creator component) and creates an
expert module (using a module creator component).
EtkProject.pas declares the Expert DLL Wizard. This was an
easy expert to write: I created an expert module with style
esProject. I then added a project creator and a module creator
to the expert module, defined the NewProjectSource property,
set a couple event handlers, and voilà — instant expert! Using
an expert module is similar to using a form; most of your
work is simply filling in the bodies of event handlers, as you
can see in Figure 2.

As simple as that was, it’s easy to get lost in the maze of expert
modules creating expert modules, so Figure 3 illustrates the orga-
nization of the experts and components in the Expert Tool Kit.

The Etk.pas file declares the components in the Expert Tool
Kit, and the expert module class, TEtkModule. The
EtkRun10.dpk package contains this unit, so you can easily
write other packages that use these components.
EtkCmp10.dpk is the main design-time package for the
Expert Tool Kit. It contains EtkReg.pas, which is the main
registration unit for the Expert Tool Kit. This unit registers
the expert module as a custom module, registers some prop-
erty editors, and creates and registers the expert modules.

The simplest way to create your own experts is to use the
Expert DLL Wizard. If you prefer to use packages, you can
15 September 1997 Delphi Informant
create a registration unit, similar to EtkReg.pas, and create a
package similar to EtkCmp10.dpk. Make sure your package
has EtkRun10 in its requires list. Then simply compile and
install your package, and you’re ready to start using your
new expert.
Conclusion
The Open Tools API makes it possible to write your own
extensions to Delphi, but the Open Tools classes are not
always easy to use. The Expert Tool Kit is a collection of
wizards and components that make it easier to use the
Open Tools API. The Expert DLL Wizard creates a new
project for writing an expert. You can add any number of
expert modules to the DLL, where each expert module
defines a Delphi expert or wizard. The Expert Tool Kit also
contains several components that help you add menu items
to Delphi’s menu bar, create new units or forms, and create
new projects.

For more information about experts, wizards, and the Open
Tools API, refer to Hidden Paths of Delphi 3 [Informant
Press, 1997]. This book provides in-depth coverage of the
Open Tools API, so you can learn about module, form, and
component interfaces, and more. Also visit the Open Tools
Web site at http://www.tempest-sw.com/opentools/, where
you can download the latest version of the Expert Tool Kit
and get information about the Open Tools API. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\SEP\DI9709RL.

Ray Lischner is the author of Hidden Paths of Delphi 3 [Informant Press, 1997], a
recently published book that explores the Open Tools API in depth. You can use
the code and components from this book to further enhance the functionality of
the Expert Tool Kit. He also wrote Secrets of Delphi 2 [Waite Group Press, 1996],
a book that reveals undocumented features of Delphi 1 and Delphi 2. He is a con-
tributor to several Delphi periodicals, and is a familiar figure on the Delphi Usenet
newsgroups. Mr Lischner is the founder and president of Tempest Software, which
specializes in consulting and training for object-oriented languages, components,
and tools. He also teaches Computer Science at Oregon State University, and
serves on the board of directors for the Pacific Northwest Software Quality
Conference. You can contact Ray via e-mail at lisch@tempest-sw.com.



MIME‘s the Word
Internet Delphi: Part III

16 September 1997 Delphi Informant

On the Net
MIME / Delphi

By Gregory Lee

text/plain

text/richtext

text/enriched

multipart/mixed

multipart/paralle

multipart/digest

multipart/alterna

message/rfc822

message/partial

message/externa

application/octet

application/posts

image/jpeg

image/gif

audio/basic

video/mpeg

Content-Type

Figure 1: MIME
In the first two articles of this series, we developed an application to send
e-mail over the Internet with the Simple Mail Transfer Protocol (SMTP), and

another to retrieve e-mail using the Post Office Protocol (POP). While these
applications are certainly functional, they lack one of the most useful features
of present-day e-mail programs: the ability to include file attachments along
with the message text. In this installment, we’ll focus on the set of protocol
extensions that make this possible.
Although the sample programs that accom-
pany this article contain quite a bit of code
(to implement SMTP, POP3, and all the
low-level socket calls), we won’t review that
information here. What we’re concerned
with now is something called Multipurpose
Internet Mail Extensions, or MIME.
The Rules of MIME
The blueprint for MIME is laid out in RFC
1521 and RFC 1522, “MIME (Multipurpose
Internet Mail Extensions),” by Borenstein,
Unformatted text (CR/LF pairs only).

Text with simple formatting.

An updated version of rich text.

Multiple parts to be processed sequentially.

l Multiple parts to be processed in parallel.

A series of RFC 822 messages.

tive Multiple parts with similar content.

A message following the RFC 822 standard.

A message fragment.

l-body A pointer to an external message.

-stream Binary data.

cript Postscript data.

A JPEG graphic.

A GIF graphic.

Encoded audio data.

MPEG encoded video data.

         Description

 Content-Types.
Bellcore, Freed, Innosoft, and Moore. RFC
stands for Request For Comment. Virtually
every Internet standard is documented some-
where in an RFC file. You can find this and
other RFC documents at ftp://ds.internic.net/rfc.
In short, these documents detail the addition of
five new mail headers and the e-mail contents
they describe:

MIME-Version
Content-Type
Content-Transfer-Encoding
Content-ID
Content-Description

The MIME-Version header simply indi-
cates which version of MIME the sending
e-mail program supports. For our purpos-
es, this is not particularly significant. We’ll
simply use version 1.0 on all messages gen-
erated by the SMTP implementation, and
assume we can handle whatever version is
received on the POP3 side. The second
header, however, is more important.
Content-Type
The Content-Type header indicates the kind
of information contained in the message.
Possible values for this field are described in
Figure 1. Because we want to add binary files
as attachments to e-mail messages — as
opposed to sending the files alone — we’ll
start by defining the Content-Type in all
messages as multipart/mixed.



On the Net
To mark the spots where the message text ends and a file
attachment begins, we must also define something called an
encapsulation boundary. That sounds a little scary, but it’s just a
string of text that we pre-define, so that the mail program can
use it to identify the start and end of each message part. If you
defined the boundary text with the string of characters abc,
each message part would be preceded by a line of text contain-
ing two hyphens followed by the string abc.

Obviously, you want to use something a little more unique for
the boundary string. That way, the odds of the boundary text
popping up somewhere in the middle of a message text or a file
attachment is extremely low. Because the nature of the bound-
ary string is similar to that of the Message-ID, we can re-use
the information from the Message-ID string in the boundary
text, with the following code:

DateTimeToString(S,'mmmddyyhhnn',Now);

S := S + EmailFrom.Text;

BuildAndSend('Message-ID: <',S,'>',Unchanged);

BoundaryString := '= Multipart Boundary ' + S;
7bit Short lines of ASCII text.

Content-Transfer-  Description
Encoding
Content-Transfer-Encoding
Following each section boundary is a separate Content-Type
header that indicates the kind of data its section contains. In
addition, each section should contain a Content-Transfer-
Encoding header to indicate how the data has been encoded.
Possible values for this field are described in Figure 2.

Because we’ve already decided that our mail program will
work only with standard English text and binary file
attachments, we’re really interested in just two of these
types: 7bit for the text, and base64 for the attachments.

At this point, you may be wondering why we would even
bother with base64 encoding. Clearly, there are two
Content-Transfer-Encoding types for 8-bit data. While it’s
true there are two type indicators for raw binary data, there
are currently no standardized e-mail transports to handle 8-
bit information. So we could build a message that techni-
cally meets the standards laid out in RFC 1521 and RFC
1522, but we couldn’t send it anywhere — at least not over
the Internet — and we couldn’t use SMTP to send it, or
POP3 to retrieve it. So that leaves us with base64. The fol-
lowing code will generate these new headers:

case HeaderLinesSent of
0: BuildAndSend('' , '', '', Unchanged);

1: BuildAndSend('--' , BoundaryString, '', Unchanged);

2: BuildAndSend('Content-Type: application/octet-stream',

'', '', Unchanged);

3: BuildAndSend('Content-Transfer-Encoding: base64',

'', '', Unchanged);

4: BuildAndSend('' , '', '', Unchanged);

end;
quoted-printable Short lines of ASCII text with quoted escape 
characters when needed.

base64 Binary data encoded as short lines of text.

8bit Short lines of raw binary data.

binary Raw binary data.

Figure 2: MIME Content-Transfer-Encoding types.
Content-ID
To link different message parts, the Content-ID header lets
you assign a unique ID to each part. Typically, this header
is used in situations where not all the message components
are contained in one file. As a result, not only does the
17 September 1997 Delphi Informant
Content-ID have to be different for each part of a single
message, it also needs to distinguish itself from every other
part of every other message. This is the same way the
Message-ID header is used to uniquely identify a piece of
e-mail. We’ll be including message text and any file attach-
ments in a single file, so we won’t bother generating this
optional header.
Content-Description
To give the receiver some hint as to what encoded message parts
actually contain, the Content-Description header allows you to
tie a string of descriptive text to each message part. This could
be a file name, a description for an embedded sound or graphics
file, a copyright notice — just about anything you want. Like
the Content-ID header, this is an optional item, and to keep
things simple, we won’t bother with it in the sample program.
Encoding base64 Message Parts
Now that we’ve got all the new headers taken care of, we really
have just one task left: encoding the file attachments as ASCII
characters. The algorithm used to accomplish this is called
base64. In short, this method takes three bytes of data — 24
bits, in all — and breaks them into four pieces that are each
six bits in length. Each six-bit piece is then used as an index
into a table containing 64 ASCII characters. The resulting
characters are then dropped into the message, one after anoth-
er, with line breaks thrown in every so often to create short,
manageable lines. That’s a fairly succinct explanation of how
base64 encoding works; but if you’re not accustomed to deal-
ing with bit-shifting operators or lookup tables, the code that
makes this happen (see Figure 3) may not be entirely clear.

We’ll take a little sample data and walk through the encoding
mechanism to make the process more obvious. Let’s say you
just ran across a handy e-mail program in Delphi Informant.
You downloaded the source code and now you want to pass
the .ZIP file along to a co-worker, because you know that’s
the sort of thing he or she would enjoy.

The first three bytes in the .ZIP file are #80 #75 #03. If
you take that as a string of bits, you get something like this:

010100000100101100000011

Break that into four pieces of six bits each, and the result
looks like this: 

010100 000100 101100 000011 



Figure 3: This encodes a line of base64 data. 

while not Eof(fhAttachment) do begin

BlockRead(fhAttachment, DataIn, 3, ByteCount);

DataOut[Count] := (DataIn[0] and $FC) shr 2;

DataOut[Count+1] := (DataIn[0] and $03) shl 4;

if ByteCount > 1 then
begin

DataOut[Count+1] :=

DataOut[Count+1] + (DataIn[1] and $F0) shr 4;

DataOut[Count+2] := (DataIn[1] and $0F) shl 2;

if ByteCount > 2 then
begin

DataOut[Count+2] := DataOut[Count+2] +

(DataIn[2] and $C0) shr 6;

DataOut[Count+3] := (DataIn[2] and $3F);

end
else
begin
DataOut[Count+3]:=$40;

end;
end

else
begin

DataOut[Count+2] := $40;

DataOut[Count+3] := $40;

end;

for I := 0 to 3 do
DataOut[Count+I] := Byte(Base64Out[DataOut[Count+I]]);

Count := Count+4;

if Count>59 then
Break;

end;

On the Net
which is the same as:

#20 #04 #44 #03. 

In Figure 4, that translates into the string UEsD.

All the bytes in the file are translated in this manner, until
the last few remaining bytes are reached. If the file size is
evenly divisible by 3, the translation will end perfectly with
Figure 4: The base64 encoding table.
the last three bytes in the
.ZIP file being translated
into the final four charac-
ters in the attachment. If
the file is not evenly divis-
ible by 3, one or two bytes
will remain. These can’t be
grouped according to the
original plan.

With these last few bytes,
the normal process is
repeated — except that
any missing six-bit groups
in the translation are
replaced with the pad
character =, and any par-
tially formed six-bit group
is padded on the right,
using zeros. 
18 September 1997 Delphi Informant
So if one odd byte remains at the end of the file, the first six bits
will be translated normally, while the last two will be padded with
zeros on the right to form a full six-bit group; the two missing
six-bit groups will automatically be replaced by the pad character. 

The same procedure is used when two odd bytes remain,
except that the first two six-bit groups will translate normal-
ly, the third group will use the remaining four bits plus two
zero-bits on the right, and the final, missing six-bit group
will be replaced by the pad character.
Recognizing and Decoding
On the other side of the transfer, the receiving e-mail pro-
gram needs a process for identifying and decoding binary
file attachments. 

Because a message’s previously defined MIME headers posi-
tively identify an encoded message part, all that’s required is
to scan the incoming text for Content-Transfer-Encoding
headers of type base64.

From there, the decoding process is simply the opposite of
the encoding algorithm: Take four bytes of data, translate
them using the lookup table (or by some other means that
achieves the same result), strip off the two highest bits from
each byte, combine the remaining 24 bits, and break them
into three groups of eight bits each.

Let’s see how the decoding process reconstitutes the previous
example’s original binary information.

As we saw earlier, the first three bytes in our .ZIP file were
encoded as the four-character string UEsD. Referring back in
the table allows us to translate this back into this sequence:

#20 #04 #44 #03 

In binary, the sequence looks like this: 

00010100 00000100 00101100 00000011



On the Net
By stripping off the two leading zero-bits in each byte and
putting it all together, we get the following string of bits:

010100000100101100000011

Divide that into three groups of eight bits each, and we have
the original sequence: 

#80 #75 #03

The code to accomplish this is shown in Figure 5.
19 September 1997 Delphi Informant

Figure 5: This code reconstitutes a line of base64-encoded data.

while (szWork[Count]<>#0) and (szWork[Count]<>' ') do begin

for I := 0 to 3 do
DataIn[I] := Base64In[Byte(szWork[Count+I])];

ByteCount := 4;

DataOut[0] := (DataIn[0] and $3F) shl 2 +

(DataIn[1] and $30) shr 4;

if DataIn[2]<>$40 then
begin
DataOut[1] := (DataIn[1] and $0F) shl 4 +

(DataIn[2] and $3C) shr 2;

if DataIn[3] <> $40 then
begin
DataOut[2] := (DataIn[2] and $03) shl 6 +

(DataIn[3] and $3F);

ByteCount := 3;

end
else

begin
ByteCount := 2;

end;
end

else
begin
ByteCount := 1;

end;

BlockWrite(fhAttachment, DataOut, ByteCount);

Inc(Count,4);

end;

Figure 6: The base64 decoding table.
Because the base64 encoded characters do not provide a conve-
nient index into the original table, I’ve created a second lookup
table (see Figure 6) to speed the decoding process. This new
table is set up according to the ASCII values of the encoded
characters. That way, the encoded character itself can be used as
the index into this new lookup table.

A by-product of this arrangement is that several “holes” in the
table indicate where certain ASCII values do not correspond to
valid base64 translations. 

Obviously, wasting these few bytes of space is a bargain when
you consider the time that we would otherwise spend doing
character-by-character searches in the original lookup table,
or evaluating a set of if conditions to arrive at the same result.
Bringing It All Together
Our updated sample programs process the MIME headers, and
incorporate the encoding and decoding methods we just
reviewed, to make binary file attachments work within the
existing SMTP and POP3 programs. These programs still don’t
allow us to store e-mail messages effectively, or to do simple
things like forward and reply to messages we’ve received.

Next month, we’ll combine the SMTP and POP3 programs
into a single project, and add some of these basic functions.
We’ll also look at some simple additions that extend the useful-
ness of the program beyond that of a typical e-mail interface. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\SEP\DI9709GL.

Gregory Lee is a programmer with over 15 years of experience writing applica-
tions and development tools. He is currently the president of Software Avenue,
Inc., which has just released a C++Builder edition of its Delphi development
tool, Internet Developer’s Kit. Greg can be reached by e-mail at
76455.3236@compuserve.com.



20 September 1997 Delphi Informant

Creating Mailing Labels 
QuickReport 2: Part II

DBNavigator
QuickReport 2 / Delphi 3

By Cary Jensen, Ph.D.
Last month’s “DBNavigator” began an overview of QuickReport version 2, the
new version of this powerful VCL-based reporting tool. This month we con-

clude the series with additional QuickReport techniques, including how to cre-
ate mailing labels, master-detail reports, and custom report previewers, as well
as how to generate reports on-the-fly.
All techniques demonstrated in this article
are associated with the project named
QUICKREP. The main form for this project
is shown in Figure 1.

The key to creating mailing labels in
QuickReport is the use of more than one
column (assuming that you’re printing on
sheets of labels that have more than one col-
umn). In fact, the easiest way to create mail-
ing labels is to use the QuickReport Label
template. To use this template, select File |

New. Then from the Object Repository,
select the Forms page, then double-click the
QuickReport Labels template (see Figure 2).
This creates a report based on a QuickRep
component, but not a form. If you want
your QuickRep to appear on a form, select
File | New Form, then place a QuickRep
component on this form.

Whichever technique you use to create your
mailing-label report, the Columns subproperty
of the QuickRep Page property allows you to
print more than one label across each page.

If the database you are printing from is simple
enough (i.e. it has one name field, one address
field, and fields for city, state/province, coun-
try, and postal code), the placement of
QRDBText fields to display this data is
straightforward. However, most databases don’t
conform to this description. For example, most
mailing-label databases include optional fields,
such as a title, or a field for a second address
line. Creating mailing labels for these databases
requires some coding.

Actually, there are several approaches for
creating mailing labels from a more complex
database. If your data is stored on a data-
base server, you can write a stored procedure
— on the server — that formats the data
correctly. Alternatively, you can create a
number of calculated fields, and perform
the formatting from the DataSet’s
OnCalcFields event handler.

The final technique, and the one used in the
QUICKREP example project, is to place 



Figure 1: The main form of the QUICKREP project.

2: The QuickReport Labels template in the Object Repository.

DBNavigator
simple QRLabels in the Detail band, and perform all
necessary formatting from within the BeforePrint event
handler for the Detail band. The code in Figure 3 is attached
to this event handler, and produces the report output shown
in Figure 4.

Figure 
Creating Master-Detail Reports
Master-detail reports display records from two or more
tables. For example, a master-detail report may display
individual sales records by customer. In this case, the
CUSTOMER table is the master table, and the SALES
table is the detail table. This is also referred to as one-to-
many reporting.

When creating master-detail reports in QuickReport version
1, it was commonplace to use DataSource components.
These permitted you to define a link between the detail and
the master table. While you can also use this technique in
QuickReport version 2, you should avoid doing so unless
you’re certain that you will never want to print the report in
a background thread. For the same reason, you shouldn’t
use the QuickReport Master/Detail template, which also uses
DataSource components.

The form named One2ManyFrm, shown in Figure 5,
demonstrates a report that includes three tables in a one-
to-many-to-many relationship. The report was initially
created by adding a QuickRep component to a form. The
Title, PageHeader, Detail, and PageFooter bands were
enabled. The DataSet property of this QuickRep was
assigned to Table1, which points to the CUSTOMER.DB
table in the DBDEMOS database.

To produce the detail section, you then place a QRSubDetail
component. This component appears as a SubDetail band. As
with the QuickRep component, you set the QRSubDetail’s
Bands subproperties if you want a header or footer for the
detail band. In this report, the QRSubDetail’s DataSet prop-
erty points to Table2, which is associated with the SALES.DB
table in the DBDEMOS database.
21 September 1997 Delphi Informant
For the third-level detail, another QRSubDetail was
placed. This QRSubDetail’s DataSet property points to
Table3, which is associated with the ITEMS.DB table in
the DBDEMOS database.

If you were using DataSource components, you would link
Table3 to Table2 using a DataSource that points to Table2
and the MasterSource and MasterFields properties of Table3.
Likewise, you would link Table2 to Table1 using a
DataSource pointing to Table1, and the MasterSource and
MasterFields properties of Table2. However, because this
report may be used in a background thread, the use of
DataSource components is ruled out. Instead, event han-
dlers are used.

For each master-detail relationship, you attach code to the
BeforePrint event handler of the band in which the master
table record appears. From within this event handler, you
restrict the records displayed in the detail table using
code. This code can either include a call to SetRange (or
define a Filter, although SetRange is far more efficient), or
execute a Query (if the detail DataSet is a query). For
example, the following code is attached to the BeforePrint
event handler associated with the Detail band of the
QuickRep component:

Table2.SetRange([Table1.FieldByName('CustNo').Value],

[Table1.FieldByName('CustNo').Value]);

Just before each new CUSTOMER table record is printed,
the SALES table records are restricted to display only those
records for the particular customer. Likewise, before each
SALES detail record is printed, an event handler is execut-
ed that restricts the ITEMS table to only those items asso-
ciated with a particular order. This is accomplished with
the following code, which is attached to the SubDetail1
BeforePrint event handler:

Table3.SetRange([Table2.FieldByName('OrderNo').Value],

[Table2.FieldByName('OrderNo').Value]);



Figure 4: The Mailing Labels report in the default QuickReport
previewer.

Figure 5: The One2ManyFrm in the QUICKREP project.

Figure 3: One technique for formatting mailing labels.

procedure TMailLabels.DetailBand1BeforePrint(

Sender: TQRCustomBand; var PrintBand: Boolean);

var
i, j: Integer;

WhichLabel: TQRLabel;

begin

i := 2;  // Initialize LabelNum.
QRLabel1.Caption :=

Table1.FieldbyName('Contact').AsString;

WhichLabel :=

TQRLabel(Self.FindComponent('QRLabel' + IntToStr(i)));

if Table1.FieldByName('Company').AsString <> '' then
begin

WhichLabel.Caption :=

Table1.FieldByName('Company').AsString;

Inc(i);

end;

WhichLabel :=

TQRLabel(Self.FindComponent('QRLabel' + IntToStr(i)));

WhichLabel.Caption :=

Table1.FieldByName('Addr1').AsString;

Inc(i);

WhichLabel :=

TQRLabel(Self.FindComponent('QRLabel' + IntToStr(i)));

if Table1.FieldByName('Addr2').AsString <> '' then
begin

WhichLabel.Caption := 

Table1.FieldByName('Addr2').AsString;

Inc(i);

end;

WhichLabel :=

TQRLabel(Self.FindComponent('QRLabel' + IntToStr(i)));

WhichLabel.Caption :=

Table1.FieldByName('City').AsString + ', '+

Table1.FieldByName('State').AsString + '  ' +

Table1.FieldByName('Country').AsString + '  ' +

Table1.FieldByName('Zip').AsString;

Inc(i);

for j := i to 5 do begin
// Blank out remaining QRLabels from last record.
WhichLabel :=

TQRLabel(Self.FindComponent('QRLabel'+IntToStr(i)));

WhichLabel.Caption := '';

end;

end;

DBNavigator
The output created by the One2ManyFrm is shown in Figure 6.

Recall that SetRange applies to the currently selected index.
Consequently, it was necessary to specifically select the appro-
priate index for each of the detail tables in this report.
Figure 6: A one-to-many-to-many report in the QuickReport
default previewer.
Creating Composite Reports

A composite report is a single report that combines informa-
tion from two or more reports. Once combined, these
reports share consecutive page numbers, and avoid unwant-
ed page breaks between reports. You create a composite
report using a QRCompositeReport component with two or
more QuickRep components.

The key to using a composite report is the OnAddReports event
handler. This event handler is called by the QRCompositeReport
component each time it’s previewed or printed. From within this
22 September 1997 Delphi Informant
event handler, you add each of the reports that you want includ-
ed in the composite report to the Reports property of the
QRCompositeReport component. Reports is a TList property,
meaning it can hold a list of pointers to other objects. You add
the individual objects to this list using the Add method.

The following is the OnAddReport event handler for the
QRCompositeReport1 object on the QUICKREP project
main form:



DBNavigator
procedure TMainForm.QRCompositeReport1AddReports(

Sender: TObject);

begin
with QRCompositeReport1.Reports do begin

Clear;

Add(SimpleFrm.QuickRep1);

Add(MailLabels.QuickRep1);

end;
end;

This code defines the composite report as consisting of the
contents of the SimpleFrm report combined with the
MailLabels report. Unfortunately, there are some limitations
when using composite reports. For example, you cannot use
a custom previewer with a composite report. Similarly, the
QRCompositeReport component doesn’t support the
PrintBackground method. Finally, if the last report in the
Report list has the PageHeader option set to False, the
QRCompositeReport component will not print the page
header on the first page of the first report.
Creating a Custom Report Previewer
The default report previewer available to all QuickReports
allows users to easily view and navigate a report. There may
be times, however, when you want to have complete control
over the look and behavior of the report previewer. In those
cases, you will create a custom previewer, and instruct the
QuickRep component to use that previewer when its
Preview method is called.

There are two steps to creating a custom report previewer.
The first is to place a QRPreview component on a form.
The QRPreview component is a TScrollBox descendant
that QuickReports can use to display the contents of a
report. Figure 7 shows the CustPreview form from the
QUICKREP project. This form contains a QRPreview
with its Align property set to alClient. If the QRPreview is
the only object on the form, the user can only preview the
first page of the report, and nothing else. Therefore, you
need to add an interface that permits the user to navigate
the report, as well as zoom in and out, select printer
options, and so on. The form shown in Figure 7 also con-
tains a menu and a toolbar from which these features are
provided.
23 September 1997 Delphi Informant

Figure 7: The CustPreview form of the QUICKREP project.
To control the previewing of a QuickReport from within a
custom Previewer, you use the properties and methods of
two objects. The first, and most obvious, is the QRPreview
component itself. This component provides properties that
enable you to set the zoom proportion of the display, as
well as navigate the report. It also provides methods to fit
the display to the width or height of the report. 

The following code example demonstrates how to display the
second page of a multi-page report in the previewer named
QRPreview1:

QRPreview1.PageNumber := 2;

The second object used to control the custom previewer is
the QRPrinter component. Each QRPreview has a QRPrinter
property that points to an instance of a QRPrinter. 

Using this property, you can issue a form-feed, load a previ-
ously saved QuickReport, save a QuickReport, or print the
current report, among many other tasks. For example, you
can execute the following statement from a custom preview
form to permit the user to change the current printer settings:

QRPreview1.QRPrinter.PrinterSetup;

The following is the event handler associated with the Next
Page button on the toolbar from the custom previewer:

procedure TCustPreview.NextPage1Click(Sender: TObject);

begin
if QRPreview1.PageNumber =

QRPreview1.QRPrinter.PageCount then
MessageBeep(MB_OK)

else
QRPreview1.PageNumber := QRPreview1.PageNumber + 1;

end;

For more examples of calling the methods of QRPreview
and QRPrinter, inspect the CUSTPREV.PAS unit of the
QUICKREP project (see the end of the article for down-
load information).

After you’ve created a form to be used as the custom pre-
viewer, you must instruct the QuickRep component to use
this previewer instead of its default. Assign an event han-
dler to the OnPreview event property of the QuickRep
object. From within this event handler, assign the
QuickRep’s QRPrinter property to the QRPrinter property
of the QRPreview component, then display the form on
which the QRPreview component appears. This form must
be displayed non-modally, using the form’s Show method.

The OnPreview event handler is similar to a TNotifyEvent method
pointer. The one interesting element about it is that Sender, the
sole parameter of a TNotifyEvent method, is not the object from
which the event handler was called, but instead is the QRPrinter
associated with the QuickRep component being previewed. 

From within the OnPreview event handler, you must cast Sender
as a TQRPrinter object, then assign this object to your preview-



begin
// Set QRep to nil, in case it was previously created.
QRep := nil;
// The string variable RepTitle is declared
// in this block.
InputBox('Set Report Title','Report Title',RepTitle);

QRCreateList(QRep, Self, DataModule1.CustomerTab,

RepTitle, nil);

// ReleaseQRep is a method of Self.
QRep.AfterPrint := ReleaseQRep;

QRep.AfterPreview := ReleaseQRep;

case RadioGroup1.ItemIndex of
0: QRep.Preview;

1: QRep.Print;

2: QRep.PrintBackground;

3:

begin
QRep.OnPreview := CustomPreview;

QRep.Preview;

QRep.OnPreview := nil;
end;

end;

DBNavigator
er’s QRPrinter property. To perform this type-casting, you must
include the QRPrntr unit in a uses clause for the unit that
includes this event handler. This is necessary because TQRPrinter
is defined in the QRPrntr unit, not the QuickRep unit.

To create your OnPreview event handler, you must also add
an OnPreview method to the form from which the preview
method will be called. This requires you to add the follow-
ing line (or one similar to it) to the published (default) or
public section of your form’s type declaration.

procedure CustomPreview(Sender: TObject);

You must also implement this method. Assuming it’s being
defined for a form class named TMainForm, the following is
an example of this implementation:

procedure TMainForm.CustomPreview(Sender: TObject);

begin
// TQRPrinter is defined in the QRPrntr unit.
// CustPreview is an auto-created form.
CustPreview.QRPreview1.QRPrinter := TQRPrinter(Sender);

CustPreview.Show;

end;

Now all you need is to assign this defined method to your
QuickRep’s OnPreview method. For example, if you want to dis-
play the QuickRep located on a Form object named SimpleFrm
using your custom previewer, you can execute the following code:

SimpleFrm.QuickRep1.OnPreview := CustomPreview;

SimpleFrm.QuickRep1.Preview;

SimpleFrm.QuickRep1.OnPreview := nil;

Notice that this code sets the QuickRep’s OnPreview prop-
erty to nil following the call to Preview. This restores the
original, default previewer. If you never want to use the
default previewer, you can omit this step.
Figure 8: A simple report with all the fields from CustomerTab.

end;

Figure 9: The CustCodeRep form in the QUICKREP project permits
the user to select which fields to report.
Creating Reports at Run Time
To the extent that you can create reports on-the-fly, you can
build an interface that permits your users to generate custom
reports at run time. Fortunately, QuickReport supplies you
with the ability to do just that.

The QRExtra unit defines two classes with the ability to
easily create reports at run time. These are TQRBuilder
and TQRListBuilder. TQRBuilder can create a basic report,
but lacks database connectivity. TQRListBuilder supports
data-aware controls, but requires a good deal of program-
ming. Finally, the QRCreateList procedure (not an object)
permits you to easily create simple list-type reports for
some or all fields from a DataSet. The following is the
declaration for QRCreateList:

procedure QRCreateList(AReport: TQuickRep,   

AOwner: TComponent; ADataSet: DataSet; 

ATitle: string; 
AFieldList: TStrings);

When you call QRCreateList, you pass five parameters. The
first is a QuickRep object, which can be an existing report,
24 September 1997 Delphi Informant
or a QuickRep instance variable. AOwner is the object
assigned to the QuickRep’s Owner property; the DataSet
provides the underlying data access; and the fourth para-
meter is a string to use as a default title for the report. The
fifth and final argument can either be nil, in which case all
fields that can fit on the report will be displayed, or a
TStrings list of field names. By passing a TStrings list, you
can selectively choose which fields you want to appear on
the report.

If the QuickRep component that you pass in the first
parameter is an existing report, the generated report is
based on the design of the existing report. Consequently,
if you call QRCreateList twice in a row, the second report
generated will have all the fields of the first in addition to
all the fields of the second. If you want to reset the
QuickRep between calls to QRCreateList, you must set the



DBNavigator

begin
CustCodeRep := TCustCodeRep.Create(Self);

if CustCodeRep.ShowModal <> mrOK then
Exit;

// Set QRep to nil, in case it was previously created.
QRep := nil;
QRCreateList(QRep, Self, DataModule1.CustomerTab,

 10: A report generated from user-selected fields.
QuickRep variable to nil before calling QRCreateList
a second time.

After you’ve created a report using QRCreateList, you
can print or preview it as you would any other. You can
even print it in a background thread, or display it in a
custom previewer. One thing to keep in mind, howev-
er, is that you must declare the QuickRep variable that
you pass as the first parameter within scope of the pre-
viewer or thread. In other words, you must at least
declare this variable in the implementation or interface
blocks of your unit. If you declare the QuickRep vari-
able within an event handler, the report will be released
as soon as the variable goes out of scope, which will
likely raise an exception.

Another issue you should consider is the release of a
QuickRep created using QRCreateList. Because this
QuickRep is not created on a form, you cannot use
the form’s OnClose event handler to release the
report. However, you can create a TNotifyEvent-type
method that calls the report’s Free method, then assign it
to the QuickRep’s AfterPrint and AfterPreview methods.
Doing so ensures that the report is freed after it has been
printed or previewed.

Figure
Figure 11: The code that generates the form in Figure 10.

CustCodeRep.Edit1.Text,

CustCodeRep.DstList.Items);

QRep.AfterPrint := ReleaseQRep;

QRep.AfterPreview := ReleaseQRep;

case RadioGroup1.ItemIndex of
0: QRep.Preview;

1: QRep.Print;

2: QRep.PrintBackground;

3:

begin
QRep.OnPreview := CustomPreview;

QRep.Preview;

QRep.OnPreview := nil;
end;

end;
end;
The code in Figure 8 creates a simple report with all fields
(that can fit) from the DataSet named CustomerTab, on
the data module named DataModule1. This code can be
found on the QUICKREP project’s main form.

Another example of using QRCreateList can also be found
on the QUICKREP project main form. This one first dis-
plays the dialog box shown in Figure 9. This dialog box
permits a user to select which records to display on the
report being generated. After the desired fields are select-
ed, and a title entered, selecting OK causes a custom
report to be generated, like the one shown in Figure 10.
This report was generated with the code in Figure 11.

The next code is associated with the AfterPrint and AfterPreview
event handler assigned in the preceding code segment:

procedure TMainForm.ReleaseQRep(Sender:  

TObject);

begin
TQuickRep(Sender).Free;

end;

Permit me to repeat: the QRCreateList is in the QRExtra
unit. Consequently, any unit that uses the preceding tech-
nique must include both QRExtra and QuickRep units
listed in its uses clause: QRExtra for the QRCreateList pro-
cedure, and QuickRep for the TQuickRep class, which is
required for the QuickRep instance variable.
Version 1 vs. Version 2
QuickReport versions 1 and 2 are vastly different. The
units involved don’t have the same names, and many of
the components are defined by different classes. Delphi 3
25 September 1997 Delphi Informant
attempts to resolve this by performing a conversion on a
version 1 QuickReport when it’s opened. While this con-
version process is automatic, it does require some manual
adjustment to the converted form.

The amount of work you’ll need to perform ranges from
changing a few properties manually, to wholesale removal
of existing objects and replacement by the QuickReport 2
equivalent. For more information on the steps necessary to
successfully convert a QuickReport 1 report, see Appendix
C of QRPT2MAN.DOC, located in Delphi 3’s
\QuickRep subdirectory. Always back up your original
reports before performing a conversion. 

Conclusion
QuickReport version 2 is a dramatic update of this powerful
VCL-based report generator. It’s easier to use, and is more
flexible than its predecessor. Now that ReportSmith is gone



DBNavigator
from Delphi, you should take a serious look at QuickReport.
It’s very likely that you will like what you see.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\SEP\DI9709CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor
of Delphi Informant, as well as a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://idt.net/~jdsi. You can also reach Jensen Data Systems at
(281) 359-3311, or via e-mail at cjensen@compuserve.com. 
26 September 1997 Delphi Informant



27 September 1997 Delphi Informant

Maintaining Your Maintenance-
Free Database
Inside InterBase: Part IV

Greater Delphi
InterBase / InterBase Server Manager

By Bill Todd
What? I thought InterBase was famous for being the only database serv-
er that doesn’t require maintenance. Why do I need an entire article on 

“

maintaining my database?”
InterBase comes as close as possible to being
maintenance-free, and InterBase databases have
been known to run for years with no mainte-
nance. If you want the best performance from
your database at all times, however, read on.
There are things you can do — at regular inter-
vals — to keep your database in shape.

Much of what’s described in this article will
be performed using Server Manager. The
screen shots and descriptions are based on the
version of Server Manager that ships with
InterBase 4.2 for Windows NT. Some of the
menu choices and screens may be different if
you’re using a different version of InterBase.
Shutting Down
Database shutdown is the first topic we’ll
consider. Sweeping the database (discussed
Figure 1: Server Manager’s InterBase Login
dialog box.
later in this article) is more effective when the
database is shut down. Also, some tasks can
be done only when the database is down.
These include:

validating and repairing the database;
adding and removing foreign keys; and
adding and removing secondary files.

To shut down your database, start Server
Manager, then connect to your server by
choosing File | Server Login, and entering the
server, protocol, user name, and password
(see Figure 1). Next, connect to the database
you want to shut down by selecting File |

Database Connect, and entering the path to
the database. If your version of InterBase uses
the Super Server architecture (version 4.0 for
Netware or 4.2 for NT), you can view a list
of the users connected to the InterBase server
by selecting Maintenance | Database

Connections.

You can’t shut down a database unless
you’re logged on as SYSDBA, or you’re the
owner of the database. To shut down the
database, choose Maintenance | Database

Shutdown; this will display the Database
Shutdown dialog box (see Figure 2), which
offers three options: 

If you choose Deny New Connections while

waiting, new users won’t be allowed to
connect, and the database will shut down
as soon as the last user disconnects. The
server will wait for the time shown in the
Timeout field at the bottom of the dialog
box. If not all users disconnect within this
interval, the database will not shut down. 
If you choose Deny New Transactions while

waiting, no new transactions can begin,



Figure 2: The Database Shutdown dialog box.

Greater Delphi
and no new users can log on. The database will shut down
— and all users will be logged off — as soon as the last
transaction is committed or rolled back. Once again, the
server waits only for the specified timeout period. 
The third option is Force Shutdown After Timeout. If you
choose this option, all active transactions will be rolled
back — and all users will be logged off — at the end of
the timeout period. 

To restart the database, choose Maintenance | Database Restart

from the Server Manager menu.
Removing Old Versions
As multiple users process transactions in InterBase, new
record versions are created. Each record version contains the
number of the transaction that created it. This ensures that
each user always sees a consistent view of the data, as of the
moment when his or her transaction started. Something must
be done to remove versions no longer needed, or your data-
base will grow continuously. InterBase performs automatic
garbage collection to remove such outdated versions. Each
time InterBase accesses a row, it compares the transaction
number of each version of the row to the oldest interesting
transaction (OIT) number. The OIT is the oldest transaction
whose status is anything other than committed. All versions
whose transaction number is older than the OIT are deleted.

But automatic garbage collection may not be enough — for
two reasons: In a large database, a long time may pass
between accesses for any particular row. This means that old
versions of a row may accumulate, inflating the size of the
database unnecessarily. The second and more important prob-
lem occurs if the OIT gets stuck. Because the OIT is the old-
est transaction with a status other than committed, any trans-
action rolled back or left in limbo by a crash during a two-
phase commit will cause the OIT to stop advancing. This will
halt automatic garbage collection, because versions with trans-
action numbers greater than the OIT can’t be deleted.

Sweeping the database when you have exclusive use is one way
to correct this problem. You can run a sweep while the database
28 September 1997 Delphi Informant
is in use; however, this will solve only the first of the problems
we examined. Such a sweep deletes all versions with transaction
numbers older than the OIT, just as automatic garbage collec-
tion does, and also removes all versions of any deleted rows.

If the OIT is stuck, you need to run a sweep with no other
users in the database. When you do, InterBase:
1) rolls back any transactions in limbo;
2) resets the OIT to the most recent transaction number;
3) removes all row versions older than the OIT; and
4) removes all deleted rows.
Recovering Limbo Transactions
If you use a two-phase commit to handle transactions that
span multiple databases on multiple servers, you may have
one or more transactions in limbo. Understanding how a
transaction gets placed in limbo requires a look at what hap-
pens during a two-phase commit:
1) The controlling server sends a message to all servers involved

in the transaction, announcing that it’s ready to commit.
2) The other servers change the status of their transaction to

“limbo,” and acknowledge that they’re ready to commit.
3) The controlling server commits its changes, and tells the 

other servers to commit.
4) The other servers change the status of their transactions 

from “limbo” to “committed,” and acknowledge that 
they’ve committed.

The problem occurs between the third and fourth steps.
What happens if the controlling server commits its changes
and tells the other servers to commit, but one or more of the
other servers crashes before it commits? Now you have a
transaction that committed on one or more servers, but not
on all. This transaction is left in limbo.

Running a sweep when you have exclusive use of the data-
base will roll back any limbo transactions, but this may not
be what you want. You can evaluate each limbo transaction
individually, and decide whether to commit it or roll it
back, by selecting Maintenance | Transaction Recovery from
the Server Manager menu. If any transactions are in limbo,
you’ll be able to view them and their affected rows one at a
time, and either commit them or roll them back. If no
transactions are in limbo, a dialog box will appear with the
message, “No pending transactions were found.”
Maintaining Indexes
InterBase indexes are balanced B-trees. Adding or deleting a
large number of rows can cause an index to become unbal-
anced and less efficient. You can rebuild any index by using
the SQL ALTER INDEX statement to inactivate the index,
then activate it. For example:

ALTER INDEX IndexName INACTIVE

ALTER INDEX IndexName ACTIVE

When you set the index to ACTIVE, it will be rebuilt, and its
selectivity will be recalculated. You can also recalculate the selectivi-
ty for an index without rebuilding it, using the SQL statement:



Greater Delphi
SET STATISTICS INDEX IndexName

What is selectivity? It’s a measure of the usefulness of an
index, computed by dividing the number of rows in the table
by the number of unique values in the index. InterBase’s
query optimizer uses selectivity to determine how useful an
index might be in processing a query. Selectivity is computed
only when the index is created, or activated by ALTER
INDEX or the SET STATISTICS statement. If you make
table changes that significantly change either the number of
rows in the table or the number of unique values in an index,
you should recompute the selectivity of any affected indexes.
Figure 3: The Database Backup dialog box.

Option Description
Transportable Backs up your data in a format that
Format can be restored on any InterBase 

server, regardless of platform.
Backup Creates a new, empty database from
Metadata this backup. (You could use this 
Only option to create an empty test data-

base from a production database.)
Disable Handy if you’re trying to back up a
Garbage corrupt database before attempting 
Collection repair, or to save time when restor-

ing from a backup. (A backup is sim-
ply a read transaction that visits 
every row in every table; by default, 
it collects garbage on every row.)

Ignore Tells InterBase to ignore any limbo
Transactions transactions, and back up only the 
In Limbo last committed version of each row. 
Ignore Allows you to back up a database 
Checksums that contains invalid checksums. (To 

detect corrupt data caused by a sys-
tem crash, InterBase maintains a 
checksum on each page of the data-
base.)

Verbose Allows you to monitor the progress 
Output of the backup. (However, detected 

errors are always displayed, whether
you select Verbose Output or not.)

Figure 4: Backup options.
Backing Up and Restoring 
Backing up and restoring your database accomplishes every-
thing that an exclusive-use sweep does — and it rebuilds all
indexes. Because a backup is a read-only transaction, it backs
up only the most recent committed version of each row,
along with the metadata for the database. Because record ver-
sions created by transactions in limbo are not backed up, all
limbo transactions are effectively rolled back.

When you restore the database, InterBase:
1) recreates the database using the metadata information

from the backup;
2) loads the data into each table, renumbering all transac-

tions starting with four (three transactions are used to
recreate the metadata);

3) sets the next transaction number to the last transaction
number used, plus one;

4) sets the oldest active transaction (OAT) to the next
transaction number;

5) sets the OIT to the next transaction number, minus
one; and

6) rebuilds all indexes.

A backup and restore is the most comprehensive mainte-
nance for an InterBase database, because it removes all old
row versions, resets the OIT, renumbers all transactions, rolls
back limbo transactions, and rebuilds all indexes, ensuring
that the indexes are balanced and that their selectivity is
accurate. Unfortunately, all current versions of InterBase
have problems backing up and restoring a database if the
metadata includes the SQL PLAN statement. This bug will
be fixed in the next release.

To back up your database, select Tasks | Backup from the
Server Manager menu to display the Database Backup dia-
log box (see Figure 3). The database path will point to the
database that was selected in Server Manager when you
selected Tasks | Backup from the menu. You can change the
database to be backed up, if you wish. In the Backup File or

Device field, enter the name and path of the disk or tape
device to which you want to back up. The Options check-
box group lets you choose any of the six options shown in
Figure 4.

After successfully backing up your database, restore it by
choosing Tasks | Restore from the Server Manager menu.
29 September 1997 Delphi Informant
Validating and Repairing Your Database
Because database servers are usually dedicated machines run-
ning stable operating systems such as NT or UNIX, and are
connected to uninterruptable power supplies, it’s not likely
that your server will crash. However, if a crash occurs, it’s pos-
sible that your database may be damaged. You can validate
and repair your database using Server Manager by selecting
Maintenance | Database Validation, to display the dialog box
shown in Figure 5.

Select the Validate record fragments option if you want InterBase
to validate record structures as well as page structures in the
database. Choose Read-only validation if you want InterBase to
validate the database, but not make any repairs. Choose Ignore

checksum errors if you want the validation to ignore checksum
errors in the data, and continue with the validation.



Figure 5: The Database Validation dialog box.

Greater Delphi
If your database contains checksum errors, the Validation
Report dialog box will open, and you can click the Repair

button to let InterBase attempt to repair the errors. Before
you repair checksum errors, be sure to make a copy of the
database using an operating-system command or utility; data
may be lost during the repair process, and some errors can’t
be repaired. Remember too that if your database was dam-
aged by a hardware failure, and if you’re using a shadow copy
of the database, it’s probably not damaged.
Conclusion
InterBase databases require very little maintenance, but if you
have transactions rolled back or in limbo, either a sweep with
exclusive use or a backup and restore is necessary. In addition,
bulk changes to a table may unbalance indexes, or make the
selectivity for the index invalid. Being aware of the events
that can cause problems and the corrective action to take to
keep your InterBase system operating at peak efficiency.

Next month, we’ll wrap up this series with a look at
InterBase’s multi-generational architecture. See you then. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. He is a Contributing Editor of Delphi
Informant; co-author of Delphi 2: A Developer’s Guide [M&T Books, 1996],
Delphi: A Developer’s Guide [M&T Books, 1995], Creating Paradox for Windows
Applications [New Riders Publishing, 1994], and Paradox for Windows Power
Programming [QUE, 1995]; and a member of Team Borland, providing technical
support on CompuServe. He has also been a speaker at every Borland Developers
Conference. He can be reached on CompuServe at 71333,2146, on the Internet at
71333.2146@compuserve.com, or at (602) 802-0178.
30 September 1997 Delphi Informant



31 September 1997 Delphi Informant

The Paradox Files: Part VI
The Finale: Multi-User and Locking Issues

Columns & Rows
Paradox / Borland Database Engine / Delphi

By Dan Ehrmann
The first two articles in this series explored the internals of Paradox .DB files;
they dissected table structure, record and block management, field types,

and calculation of record size. The third article examined primary and sec-
ondary indices, the fourth discussed validity checks and referential integrity, and
the fifth covered password protection and the table-language options. This sixth
and final article will cover multi-user access to Paradox tables across a network,
and how Paradox locks tables and records.
Using Paradox tables over a network means
facing a whole new set of challenges. While a
query is extracting information from a table,
other users may be adding or modifying the
very records being queried. Multi-user access
is a balancing act: Minimize conflicts between
users to maximize access — all while retain-
ing data integrity.

The Paradox file format is designed to be
multi-user “straight out of the box.” When
you access Paradox tables on a shared device,
the BDE automatically places table and
record locks on those tables. It places the least
restrictive lock compatible with the operation
being performed. If an operation requires
exclusive access to a table, the BDE will
ensure that it has this level of access before
proceeding. But if an operation can be per-
formed while other users are modifying the
table, the BDE will place a lock with only
minimal restrictions.

Before it grants access to an object, the BDE
always checks which locks have been placed
on that object by other users. Access by any
user must be compatible with all existing
locks on a table. If prior locks are too restric-
tive, a user won’t be able to access the table,
and the BDE will report that other users have
placed conflicting locks. If prior locks allow
for concurrent access, the BDE will place a
new lock — with the network user’s name
attached — alongside the existing ones, guar-
anteeing the operation will finish. 

Along with the locks the BDE places auto-
matically, you can also place locks preemp-
tively, under program control. 
How the BDE Manages Network Locking
Locking options for Paradox tables are signifi-
cantly more powerful than the default file-
locking available in DOS and Windows, and
even those in many network operating sys-
tems. For this reason, the BDE manages
Paradox table and record locks itself, using
custom files. These files are created by the
BDE when needed, and managed automati-
cally. You will normally not need to worry
about them — unless there was a system
lockup or abnormal exit from an application
— but it helps to understand what these files
are and how they work.

PDOXUSRS.NET. This file is known as
the Paradox Network Control file, because
it serves to track the various users on the
network. Every application sharing access
to Paradox tables on the network must ref-
erence this file, and there should be only
one such file on the whole network. The
location of this file is stored in the
IDAPI.CFG file, which itself can be main-
tained locally for each user, or shared on
the network. It’s set in the BDE



Columns & Rows
Administrator (Delphi 3) or the BDE Configuration
Program (Delphi 2). On the Drivers page, select the
Paradox driver and specify a shared location for the Net
Dir, also known as the network control directory.

Newer versions of the BDE (3.x and 4.0) allow you to use dif-
ferent virtual locations for this directory — including mapped
drives — as long as each address points to the same physical
location. This isn’t true in older versions of the BDE.

If a PDOXUSRS.NET file isn’t found in the specified loca-
tion, it’s created automatically by the BDE. This file can track
up to 300 virtual users, including multiple sessions created by
a single user. 

In your Delphi applications, the location of the
PDOXUSRS.NET file can be read and set using the
TSession.NetFileDir property. For the default session, this prop-
erty is read from the IDAPI.CFG file. To access files controlled
by different PDOXUSRS.NET files, create a new TSession.

PDOXUSRS.LCK. This file is created by the BDE in each
directory containing Paradox tables, when the first user
accesses one of these tables. It tracks which activities are per-
mitted in a directory, and what each user is actually doing
with the tables in that directory. There are three types of
PDOXUSRS.LCK files:

For a shared directory, the file contains information on
the tables and records locked, the user who placed each
lock, the session in which the lock was placed, and the
type of lock that was placed. When a user attempts to
place a lock on a table, this file is checked to see if a con-
flicting lock exists; if it does not, Paradox places the new
lock by making an entry into this file.
For a user’s Private Directory, the file contains a special flag
indicating its private status, and the user to whom it
32 September 1997 Delphi Informant

Lock             Description

Exclusive Lock The user has exclusive access to, and 
control of, the table; no one else can 
even view it. Required for creating or 
restructuring a table.

Write Lock Other users can view the table, but only
the locked user can modify it. This 
ensures that updates take place cleanly.
Copying a table requires a Write Lock 
on the destination, as does any kind of 
bulk change to the table. Only one 
Write Lock can exist on a table.

Read Lock The locked user may read the table, 
and write to it if no other user also has 
a Read Lock. Other users can also read 
the table at all times. Multiple Read 
Locks can coexist on a table, but each 
will stop the others from writing. 

Open Lock The lowest level of locking. A user may 
open the table and read its contents; 
other users can do the same. Required 
for reading the structure of a table.

Figure 1: Paradox table locks.
belongs. This flag tells the BDE that another user or ses-
sion can’t access Paradox tables in this directory. The
Private Directory can be used to hold temporary tables
that must remain unique to a specific user, such as inter-
mediate result tables from a series of queries. In your
Delphi applications, the location of the Private Directory
can be read and set using the TSession.PrivateDir property.
The BDE can also lock a directory as shareable, but read-
only. When a directory lock is placed, the BDE knows
that no table or record locking need be performed,
because all tables in that directory can be read by all users
— subject, of course, to the network-access rights granted
by the supervisor — but no tables can be modified. This
results in significantly better performance. 

A directory lock is handled by the BDE as an exclusive lock
on the file PARADOX.DRO (Directory Read Only.) To 
create a directory lock in Delphi, use the following code:

var
lock_path: array[0..DbiMaxTblNameLen] of Char;

begin  
StrPCopy(lock_path,'C:\MYPATH\PARADOX.DRO');

Check(DbiAcqPersistTableLock(

Database1.Handle, lock_path,szPARADOX));

end;

The DbiAcqPersistTableLock function can be used to acquire
an exclusive lock on a non-existent table, where the extension
is specified. Use DbiRelPersistTableLock to release the lock.
The Check procedure determines if the return value from the
function call indicates an error condition, and if so, calls
DbiError to raise an exception.

One of the important benefits of using custom files to control
locks is that additional information is available in the event of
an error. For example, if you try to access a table and a con-
flicting lock exists, the BDE will return an error message with
the name of the user holding the conflicting lock.

PARADOX.NET, PARADOX.LCK, and <tablename>.LCK.
As you saw in the first article of this series, the Paradox file for-
mat started life back in 1985, within the Paradox for DOS prod-
uct. Multi-user capabilities were added in 1987 with version 2.0.
At the time, Paradox used a slightly different network-locking
scheme. In 1992, to coincide with the releases of Paradox 4.0 for
DOS and Paradox 1.0 for Windows, Borland revised this scheme
to improve performance and reliability. New .NET and .LCK
filenames were chosen, but the old ones are also created and
flagged to lock old-style applications out of these directories.
Table Locks
Paradox table locks are shown in Figure 1 (listed in order from
most to least restrictive); Figure 2 shows how locks can coexist
with each other. For each table in a directory, a check-mark
indicates that locks of each type can be placed at the same time.

Open Locks can coexist, allowing more than one user to view a
table at the same time. Two or more people can also have Read
Locks on a table at the same time. In this situation, each stops



Columns & Rows

Figure 3: Trapping for table-open exceptions.

var
err: Word;

begin

try
Table1.Exclusive := True;    

Table1.Open;

except
on E: EDBEngineError do

begin
err := (E as EDBEngineError).Errors[1].ErrorCode;

if (err = 10243) or (err = 10245) then
ShowMessage('Table cannot be opened exclusively')

end;
end;

end;

ation                                                   Table Lock

the structure of a table, including many Open
tions performed in design mode.
ate a drop-down list control from a field Open
ble.

re a query. Open
te a SELECT statement. Open
te an INSERT, UPDATE, or DELETE statement. Write
 a table. Exclusive
E a table. Exclusive
4: Table-level locks required for operations.
the other from writing to the table. A Write Lock provides
exclusive write access to a table; other people can view the data
via an Open Lock, but you’re guaranteed that no one else can
stop you from reading and writing to the table.

Delphi implements these locks in a slightly different way than
you would expect. Through the BDE, Delphi allows you to
open a table in Share Mode or Exclusive Mode, controlled by
the TTable.Exclusive property, as follows:

If the Exclusive property is left at its default of False, the
table is opened with an Open Lock, and many people can
share access to the table — as long as they use the same
mode.
If the Exclusive property is set to True before the TTable is
opened, no other application or user can access the table
in any way. The table is opened with an Exclusive Lock,
and the first user has exclusive control over it.

If another user has a table open in Share Mode (with
an Open Lock), and you try to open the same table in
Exclusive Mode, you will receive the following error:

Table is busy.

Table: <tablename>

User: <other user name>.

If another user has an Exclusive Lock on a table, and
you try to open the same table in either Share or
Exclusive modes, the error message has a slightly dif-
ferent first line:

File is locked.

Table: <tablename>

User: <other user name>.

A lock conflict is returned as an EDBEngineError, with a
code of 10243 for a busy table (conflict with an Open Lock),
and 10245 for a locked table (conflict with an Exclusive
Lock). You can trap for table-open exceptions using code such
as that in Figure 3.

Oper

Read 
opera
Popul
in a ta
Prepa
Execu
Execu
ALTER
CREAT

Figure 
Default Locks for Operations
Every operation performed on Paradox tables has an associat-
ed default lock. Figure 4 lists some common operations, and
the table-level lock required for each.

For example, if you execute a SQL INSERT, UPDATE, or
DELETE statement, the BDE will attempt to place a
Write Lock on the table, to ensure that you retain a consis-
tent view for the duration of the operation. If other users
have only Open Locks on the table, the Write Lock will be
placed. But if other users have Read Locks, the Write Lock
will fail.
33 September 1997 Delphi Informant

Figure 2: Paradox locks that can coexist.

Exclusive Lock
Write Lock
Read Lock
Open Lock

Open Lock Read Lock Write Lock
Placing Table Locks under Program Control
As you saw in the previous article in this series, the BDE
manages access to tables using TSession variables. When
you run your application, the BDE creates a default
TSession for you. You can explicitly create additional
TSession variables to establish independent connections to
the BDE and your tables.

The BDE treats each session as a separate virtual user.
Within the lock file, Paradox considers user IDs and session
handles to be fundamentally the same thing. Table locks are
placed by Paradox at the object level, but enforced at the
session level. If you attempt to place multiple locks on a
table within the same session — even if those locks are
potentially redundant — you will not be stopped. How-
ever, locks placed under different sessions are treated as
having been placed by different users, and the concurrency
rules shown in Figure 2 will be applied to determine if a
lock can be placed.

To lock a Paradox table, use the TTable.Lock method. It
accepts a single parameter: the lock type to place. LockType is
either ltReadLock or ltWriteLock. You must call this method
separately for each table you want to lock, and for each lock
you want to place on a table. 

To remove a lock already placed, use the
TTable.Unlock method, which accepts
the same parameter. It must be called
separately for each table and each lock.

Exclusive Lock



Columns & Rows

Figure 5: Trapping for a conflicting record lock.

procedure TForm1.Table1EditError(DataSet: TDataSet;

E: EDatabaseError; var Action: TDataAction);

var
err: Word;

begin
if E is EDBEngineError then

begin
err := (E as EDBEngineError).Errors[1].ErrorCode;

if (err = 10241) then
begin
ShowMessage('Another user is editing this item');

Action := daAbort;

end;
end;

end;
When Are Table Locks Not Placed?
In the following situations, table locks will not be placed
when you access Paradox tables:

When the directory is on a local hard disk, unless
LOCAL SHARE has been enabled. (This is done under
System | Initialization in the BDE Administrator. For it to
be functional, you must also enable local sharing at the
operating-system level.);
in the user’s Private Directory, because no other users can
access Paradox tables in this directory;
on a read-only device such as a CD-ROM;
if the table has its Read-Only file attribute set at the 
operating-system level; or
if the PDOXUSRS.LCK file indicates a “directory-
locked” directory, where all Paradox objects are read-only.
Record Locks
When users start to edit records in the table, Paradox places
record locks in the lock file, but the table lock remains an Open
Lock to ensure maximum concurrency. When you attempt to
post a new or changed record to a table, the Open Lock is esca-
lated to a Write Lock for the duration of the posting operation.

The BDE supports a maximum of 255 record locks per table
at any one time. Paradox record locks are exclusive. Only one
user at a time can lock a record, although other users can
read the record, and even see changes as they occur. 

If another user has locked a record that you’re attempting to
edit, you’ll receive the following error:

Record locked by another user.

Table: <tablename>

User: <other user name>.

To trap for a conflicting record lock, place code in the
OnEditError event. The record lock is returned as an
EDBEngineError, with a code of 10241 (see Figure 5).
Transaction Support
As originally designed, the Paradox file format didn’t support
transactions. Starting with Delphi 2, however, the BDE is
able to support transaction statements on Paradox tables. 

It does so by setting up a change log that’s private to each
user. If you’re operating under explicit transaction control
and you modify a record, the BDE will place a lock on that
record, write a copy of the original record to the local log
file, and make the change in the actual table. The record
lock isn’t released, even if other records and other tables are
modified. If you commit your transaction — which happens
more often than rollback — the record locks are released,
and the old versions in the log file are discarded. If you roll
back your transaction, the old version in the log file is writ-
ten to the table before the record locks are released.

For local transactions to work, the transaction isolation prop-
erty must be set to tiDirtyRead, because this is the only mode
supported against Paradox tables. 
34 September 1997 Delphi Informant
This level of transaction support has some limitations. For
Paradox tables, the BDE provides no automatic recovery after a
crash. In fact, a crash has the same effect as a commit, because
the changes have already been written to the table. Also,
because the lock file can handle a maximum of 255 record
locks, the size of such transactions is significantly limited.

Transaction support against local tables should be considered
as a full implementation. If you need complete transaction
control over changes, you should seriously consider Inter-
Base, or other database-server environments.
Multi-User Limits
The mechanics of the Paradox file format impose a practical
limitation on the number of simultaneous users. Although the
format theoretically can support up to 300 virtual users,
including extra sessions and connections, 40 to 50 intensive
users is a more practical limit. On the other hand, this com-
pares favorably with Microsoft’s Jet engine (used by Access),
which starts to break down with 12 to 15 intensive users.
Dealing with Problems
If you’re having trouble accessing Paradox tables on a net-
work, examine these areas:

If users receive BDE errors about multiple .NET files in
use, including errors where locks can’t be placed because
the directory is controlled by a different .NET file, look
for multiple IDAPI.CFG files, each pointing to a differ-
ent location for the Paradox network-control directory. 
A corrupted PDOXUSRS.NET or PDOXUSRS.LCK file
is a common culprit. It may occur if a user terminated the
program abnormally, leaving phantom connections and
locks. To fix the problem, get everyone out of all BDE
applications on the network, and delete the damaged
file(s). They will be re-created automatically when needed.
If one user can access the application, but all subsequent
users are locked out, check to see if the first user has mis-
takenly configured the application directory as his or her
Paradox Private Directory.

This concludes our six-part exploration of the Paradox file
format. With an understanding of how Paradox tables work,
you’re now better equipped to use them effectively in your
Delphi applications.



Columns & Rows
My thanks to Bill Todd and Barbara Radomsky for technical-
ly reviewing each article in this series, and for providing
many valuable suggestions. Any errors of fact or omission,
however, are entirely my responsibility. D

Dan Ehrmann is the founder and president of Kallista, Inc., a database and
Internet consulting firm based in Chicago. He’s the author of two books on
Paradox, and is a member of Team Borland and Corel’s CTech. Dan was the
Chairman of the Advisory Board for Borland’s first Paradox conference, which
evolved into the current BDC. He has worked with the Paradox file format for
more than ten years. Dan can be reached via e-mail at dan@kallista.com.
35 September 1997 Delphi Informant



36 September 1997 Delphi Informant

Extending QuickReport: Part II
Further Tweaks to the Database Grid Component

Delphi Reports
Delphi 2 / QuickReport

By Keith Wood
Last month, we endowed our QuickReport add-on with the ability to skip to
any page at the press of a key, and to print only the pages we want. We

also added a database grid component that automatically displays fields from
the data source. This month, we’ll continue to improve the database grid with
properties for each column. Along the way, we’ll encounter component editors
and the saving and reloading of extended component properties.
A “Quick” Recap
Last month’s TQRDBGrid component
offers the functionality of a database grid,
but is specifically tailored for use with
QuickReport. With automatic formatting
of the database fields, it allows the use of a
single component, rather than separate
ones for each field.

This component takes most of its format-
ting from the field definitions of the data
set attached to the grid’s data source. The
fields’ alignment, column headings, display
formatting, and column width can be set by
altering the appropriate properties. The font
and background color for all the columns
are set by properties of the grid. A grid
showing column headers for the fields can
be attached to the detail grid.

But wouldn’t it be nice if we had more 
control? If we could set the alignment, 
background color, font, and width for each 
column individually, we could create some
stunning effects. Then we might want to
have different properties for our column
headings. We’ll achieve this by adding a list
of column definitions to the grid. 
Column Definitions
Each column is set up as an object,
TQRDBGridColumn. The FieldName prop-
erty identifies the field to be displayed. The
Alignment and TitleAlignment properties set
alignment values for the field and column
heading, respectively. Colour, TitleColour, Font,
and TitleFont operate in a similar fashion. The
TitleCaption determines the column heading to
be shown, while the DisplayWidth property
controls the width of the column.

In each case, however, we want the default
values to apply unless specifically altered.
These come from the field of the data set or
from the grid itself, depending on the prop-
erty. Furthermore, a value set for a column
becomes the default for the heading, unless
overridden at that level. To control all this,
and keep track of what comes from where,
an additional property is used: AssignedValues
is a set of flags corresponding to each prop-
erty. This is maintained internally, although
it’s available externally as read-only informa-
tion. A RestoreDefaults method returns all
the column properties to their defaults.

To enable a column to pick up these defaults
from the field or grid, it must know where
to find them. To this end, the column defin-
ition, when created, must be passed a refer-
ence to its attached grid.

To understand how the object keeps track
of which property comes from where, let’s
examine the Colour/TitleColour pair.
Setting either of these properties stores the
new value, and updates the set of non-
default values:

{ Set colour, and flag that it's valid. }
procedure TQRDBGridColumn.SetColour(

clrColour: TColor);

begin
FColour := clrColour;

Include(FAssignedValues, gaColour);

end;



Delphi Reports

Figure 1: Invoking the component editor.

{ Show the columns editor for the component. }
procedure TQRDBGridEditor.Edit;
var

dlgGridColumnEditor: TQRDBGridColumnEditor;

begin
if TQRDBGrid(Component).HeaderFor <> nil then

MessageDlg('This grid is a header for ' +

TQRDBGrid(Component).HeaderFor.Name + '.' + #13#10 +

'Please alter the column definitions' + #13#10 +

'for the base grid instead.', mtError, [mbOK], 0)

else
if (TQRDBGrid(Component).DataSource = nil) or

(TQRDBGrid(Component).DataSource.DataSet = nil) or
not TQRDBGrid(Component).DataSource.DataSet.Active then

MessageDlg('Please attach this grid to a datasource'+ 

#13#10 + 'before altering its column definitions.', 

mtError, [mbOK], 0)

else
begin

dlgGridColumnEditor := 

TQRDBGridColumnEditor.CreateFor(Application, 

Component);

try
if dlgGridColumnEditor.ShowModal = mrOK then

begin
TQRDBGrid(Component).Invalidate;

Designer.Modified;

end;
finally
dlgGridColumnEditor.Free;

end;
end;

end;
When retrieving the Colour value, this set is checked, and
the appropriate color is returned from the internal field or
the grid default:

{ Get colour - default to grid value. }
function TQRDBGridColumn.GetColour: TColor;

begin
if gaColour in AssignedValues then

Result := FColour

else
Result := FGrid.Colour;

end;

Similarly, the TitleColour value is returned from the internal
field if the flag appears in the set, or from the Colour prop-
erty, which originates from its own field or the grid:

{ Get title colour - default to column or field value. }
function TQRDBGridColumn.GetTitleColour: TColor;

begin
if gaTitleColour in AssignedValues then

Result := FTitleColour

else
Result := Colour;

end;

In this way, the defaults flow through multiple levels to create
the desired effect.

These column definitions are then placed into a list, the
Columns property, within the TQRDBGrid component. The
list derives from TList, overriding the Add method to ensure
that only appropriate column definitions are placed in it. This
means that all subsequent code can assume the required objects
are present, and process them without further checking.
Maintaining Definitions
All these column definitions can be maintained by manipu-
lating TQRDBGridColumn objects, and adding or remov-
ing them from the Columns property of the TQRDBGrid.
This would take a fair amount of code, and is perhaps
prone to errors. Because Delphi is a visual environment, a
better way to achieve the same result is to visually edit
these definitions at design time. To do this, we need to cre-
ate a component editor.

A component editor can add much functionality to the
Delphi IDE: adding items to the context menu that
appears when the component is right-clicked, changing the
default action when a component is double-clicked, and
copying additional formats to the Clipboard. In our case,
we’ll add a column editor to be displayed when the compo-
nent is double-clicked.

Our new component editor, TQRDBGridEditor, is derived
from TComponentEditor, and needs only to override the Edit
method to provide the necessary functionality. Within this
method, it first checks that the grid is appropriate for editing
— that it isn’t a header for another grid, in which case the
columns should be changed — and that the grid is attached
to an active data set, so that field definitions are available.
The editor’s Component property provides access to the com-
ponent for which the editor was invoked.
37 September 1997 Delphi Informant
Once the grid has passed these tests, the editor creates the
dialog-box interface, attaches it to the current component,
and displays it modally. If the OK button is clicked, the com-
ponent is told to re-paint itself, and the design environment
is informed that the component has been changed. This latter
step must be done to keep the IDE synchronized. The dialog
box updates the Columns property of the component when
the changes are accepted. This allows the editor to be used
outside the design environment, as shown in the demonstra-
tion program (see Figure 1).
The Column Editor
The column editor’s dialog box is similar in appearance to
that of the column editor for normal database grids in Delphi
2 (see Figure 2). On the left are all the columns defined so
far, with buttons to add individual fields, to add all fields
from the data set, and to delete one or all columns. The order
of the fields can be rearranged by dragging them to a new
position. This order is reflected in the grid.

When a column is selected, its properties are displayed on
the right. These are arranged on two tabs corresponding to
those for the field itself, and those for its column heading.
The values within these properties are shown disabled
(grayed) when they reflect the default values from the field,
grid, or column, as appropriate. Once altered, they are
shown in the normal text color. This allows us to easily see
which values we’ve changed, and which are determined by
outside properties. Once a value has been altered, the Restore

Defaults button is enabled. Clicking it returns all the proper-
ties for this column to their defaults.



Figure 2: The column editor for the TQRDBGrid component.

Delphi Reports
The color properties can be set by selecting from the drop-
down list, by typing in a color as text or hex codes, or by
double-clicking the field. This last option invokes the stan-
dard Windows color dialog box, allowing the color to be set
visually. To obtain the names of the standard Delphi colors,
we use the GetColorValues callback function, which takes a
procedure as a parameter, then passes each color name to the
procedure. We want each name to be added to our drop-
down list, so we pass along the list’s Add method. Due to
declaration differences between the two, we must first assign
the Add method to a locally defined function type before
casting it as the procedure type expected by GetColorValues:

type
TGetStrFunc =

function(const Value: string): Integer of object;

var
fnAdd: TGetStrFunc;

{ Add colours by name. }
cmbColour.Items.Clear;

fnAdd := cmbColour.Items.Add;

GetColorValues(TGetStrProc(fnAdd));

The font properties can be set by clicking the button at the
end of the field, which displays the standard font dialog
box. Back on the editor screen, the font is visually displayed
in the field.

All the changes can be accepted by clicking the OK button, or
discarded by clicking the Cancel button. Once accepted, the
column definitions are copied back to the component for
which the dialog box was opened.
Showing Off
The Paint and Print methods of the TQRDBGrid component
must be updated to use the new details held in the Columns
property. In both cases, the code remains substantially the
same as before the columns’ arrival. We still want to retain
the default behavior of getting all the formatting from the
data set and its fields. When we process these new columns,
38 September 1997 Delphi Informant
only the source of the display parameters changes; their pro-
cessing does not.

If there are no column definitions, we continue to access the
data set and step through each of its fields, looking for and
printing those that are visible. If there are column definitions
instead, we step through each of these in turn, and use the
values to format the fields on the screen or report.
Persistent Columns
All this is great! We can alter each property of each col-
umn, and have our grid appear in multiple fonts and colors
— all of which are reflected in the report when we preview
it by double-clicking on the TQuickReport component. But
when we close and reopen the report, all has been lost! The
carefully crafted definitions in our Columns property
weren’t saved with the rest of the component.

To overcome this, we need to inform Delphi that we want to
save additional information with the component, and provide
methods for writing and reading these details. This is done by
overriding the DefineProperties method. By default, this noti-
fies Delphi of all the published properties of the component,
and arranges for them to be automatically saved and reloaded.

First, call the inherited method to retain this default process-
ing before adding the Columns property to the list. Reading
and writing methods need to be supplied, along with a test
for when the property contains valid details:

{ Set-up for saving Columns property. }
procedure TQRDBGrid.DefineProperties(Filer: TFiler);

begin
inherited DefineProperties(Filer);

Filer.DefineProperty('Columns', ReadData, WriteData, 

Columns.Count > 0);

end;

Now describe how to save all the data from the column defin-
itions, then retrieve them. Because they are stored as objects
within a list, we need to step though each one and save all its
properties before proceeding.

Start the process by telling Delphi that a list will follow, using the
WriteListBegin method of TWriter. Then, for each object in the
list, write the name of the field in this column. Next, save only
those properties that are different from the defaults. These are
identified through elements in the AssignedValues set. There is no
method to write out a set as such, so we convert it to a string of
“Y” and “N” flags by stepping through all the possible elements,
and testing for their presence in the set. This string is written out.

Finally, write out a representation of each non-default column
property to the component stream. The font properties have
embedded values, and are expanded in a similar fashion, when
necessary. Last, we close the list with a call to WriteListEnd.
All this is shown in Listing Five beginning on page 39.

Reading these values back into the property is a similar
process. Clear any existing column definitions, and move past
the beginning of the property list. Then, while columns are



39 September 1997 Delphi Informant

Figure 3: Text representation of the
properties for a TQRDBGrid compo-
nent (from the .DFM file) showing
the column definitions.

object qrdbgCustomer: TQRDBGrid

Left = 32

Top = 0

Width = 400

Height = 20

AlignToBand = False

BorderStyle = bsVertical

DataSource = dsCustomer

Columns = (

'CustNo'

'NNNNYYYN'

0

'Cust No.'

'clSilver'

'Company'

'NYYYNNYN'

'clRed'

'clBlack'

-13

'Times New Roman'

10

'YNNN'

140

'clSilver'

'Addr1'

'NNNNNYYN'

'Address'

'clSilver'

'Addr2'

'NNNNNYYN'

''

'clSilver'

'City'

'NNNNNNYN'

'clSilver'

'State'

'NNNNNNYN'

'clSilver'

'Zip'

'NNNNNNYN'

'clSilver')

end

Delphi Reports

Figure 4: A sample report showing columns with differing
alignments, colors, and fonts.
still to be read, retrieve
the field name for a col-
umn, along with the
flags indicating which of
its properties are in
default. From the stream,
read the value of each
property that isn’t
defaulted. Fonts are built
up from their con-
stituent parts — the
reverse of the writing
process.

All these values are used
to create a new column-
definition object that’s
added to the grid’s list, on
completion. Finally, read
past the end-of-list mark-
er, and prepare for the
next property or object in
the component stream.
The code for the reading
process is shown in
Listing Six on page 40.

By opening the .DFM
file for a form containing
a TQRDBGrid whose
columns have been
defined, we can see the
effects of all this process-
ing (see Figure 3). The
property is identified by
its name, Columns, and
is followed by a list of
internal properties, denoted by the parentheses. Within these
are the definitions of each column: the name of the field to
show, followed by the flags showing which fields are different
from the defaults, and then the values of those fields.
Columns in Action
The demonstration program that accompanied the previous
article contained a button, entitled Columns, that invoked the
columns editor for the detail database grid in the report.
Clicking this button has the same effect as double-clicking the
grid in the IDE. The resultant dialog box allows columns to be
added, removed, or rearranged, and their properties to be
altered. Once these changes are saved, they affect the appearance
of the report when it’s next generated.

Try changing each of the field properties, and observe their
effects. Values set for the field flow through to the 
header, unless overridden. A sample report is shown in
Figure 4. Note that the heading on the first column is
aligned to the left, while the data is right-aligned. The font
for the Company column has also been altered, with a dif-
ferent one again in the heading. The red color of this col-
umn stems from the OnPrint event for the grid, as
described last month.
Conclusion
The TQRDBGrid component provides a quicker way than ever
before for getting data out of the database and onto the page. It
easily displays all the fields of the attached data set, taking its
formatting instructions from the field definitions.

Now we’ve extended this component even further, allowing
each column to have its own properties. Along the way, we’ve
seen how to create a component editor, and how to save and
reload extended properties within Delphi. Of course, the next
step is to add code to deal with memo and graphic columns
within the grid. But that’s another story ... ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\SEP\DI9709KW.

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine.
Occasionally working with Delphi, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@netinfo.com.au or by phone
(Australia) at 6-291-8070.
Begin Listing Five — Saving column definitions
{ Write the contents of the columns list. }
procedure TQRDBGrid.WriteData(Writer: TWriter);
const

cPresent: array [False..True] of Char = ('N', 'Y');

var
i: Integer;

sAssigned: string[10];
gaValue: TQRDBGridAssignedValues;

{ Write out the details of a font. }
procedure WriteFont(fntFont: TFont);

var
sStyle: string[10];
fsStyle: TFontStyle;



4

Delphi Reports
begin
with fntFont do begin

Writer.WriteString(ColorToString(Color));

Writer.WriteInteger(Height);

Writer.WriteString(Name);

Writer.WriteInteger(Size);

sStyle := '';

for fsStyle := Low(TFontStyle) to High(TFontStyle) do
sStyle := sStyle + cPresent[fsStyle in Style];

Writer.WriteString(sStyle);  

{ String of N/Y representing styles. }
end;

end;

begin

Writer.WriteListBegin;

for i := 0 to Columns.Count - 1 do
{ Process all columns. }
with TQRDBGridColumn(Columns.Items[i]) do begin

Writer.WriteString(FieldName);

sAssigned := '';

for gaValue := Low(TQRDBGridAssignedValues) 

to High(TQRDBGridAssignedValues) do
sAssigned := 

sAssigned + cPresent[gaValue in AssignedValues];

Writer.WriteString(sAssigned);  

{ String of N/Y representing attributes. }
if gaAlignment in AssignedValues then

Writer.WriteInteger(Ord(Alignment));

if gaColour in AssignedValues then
Writer.WriteString(ColorToString(Colour));

if gaFont in AssignedValues then
WriteFont(Font);

if gaWidth in AssignedValues then
Writer.WriteInteger(DisplayWidth);

if gaTitleAlignment in AssignedValues then
Writer.WriteInteger(Ord(TitleAlignment));

if gaTitleCaption in AssignedValues then
Writer.WriteString(TitleCaption);

if gaTitleColour in AssignedValues then
Writer.WriteString(ColorToString(TitleColour));

if gaTitleFont in AssignedValues then
WriteFont(TitleFont);

end;
Writer.WriteListEnd;

end;

End Listing Five
Begin Listing Six — Reading column definitions
{ Read the contents of the columns list. }
procedure TQRDBGrid.ReadData(Reader: TReader);

var
i: Integer;

sAssigned: string[10];
colColumn: TQRDBGridColumn;

{ Read in the details of a font. }
function ReadFont: TFont;

var
sStyle: string[10];
fsStyle: TFontStyle;

begin
Result := TFont.Create;

with Result do begin
Color := StringToColor(Reader.ReadString);

Height := Reader.ReadInteger;

Name := Reader.ReadString;

Size := Reader.ReadInteger;

sStyle := Reader.ReadString;  

{ String of N/Y representing styles. }
for fsStyle := Low(TFontStyle) to High(TFontStyle) do
if sStyle[Ord(fsStyle) + 1] = 'Y' then

Style := Style + [fsStyle];

end;
0 September 1997 Delphi Informant
end;

begin
Reader.ReadListBegin;

Columns.Clear;

while not Reader.EndOfList do begin
{ Process all the saved columns. }
colColumn := TQRDBGridColumn.Create(Self);

with colColumn do begin
FieldName := Reader.ReadString;

sAssigned := Reader.ReadString;  

{ String of N/Y representing attributes. }
if sAssigned[Ord(gaAlignment) + 1] = 'Y' then

Alignment := TAlignment(Reader.ReadInteger);

if sAssigned[Ord(gaColour) + 1] = 'Y' then
Colour := StringToColor(Reader.ReadString);

if sAssigned[Ord(gaFont) + 1] = 'Y' then
Font := ReadFont;

if sAssigned[Ord(gaWidth) + 1] = 'Y' then
DisplayWidth := Reader.ReadInteger;

if sAssigned[Ord(gaTitleAlignment) + 1] = 'Y' then
TitleAlignment := TAlignment(Reader.ReadInteger);

if sAssigned[Ord(gaTitleCaption) + 1] = 'Y' then
TitleCaption := Reader.ReadString;

if sAssigned[Ord(gaTitleColour) + 1] = 'Y' then
TitleColour := StringToColor(Reader.ReadString);

if sAssigned[Ord(gaTitleFont) + 1] = 'Y' then
TitleFont := ReadFont;

end;
Columns.Add(colColumn);  { Add to columns. }

end;
Reader.ReadListEnd;

end;

End Listing Six



41 September 1997 Delphi Informant

Dispatches from the Delphi Front
Geometry, Hotkeys, a New Cool Way to Crash, and More...

At Your Fingertips
Delphi 2 / Delphi 3 / Object Pascal

By Robert Vivrette

Figure 1: Microsoft’
Handy Math Functions
Delphi 2 and 3 have a very handy unit called
Math that adds many powerful mathematical
functions to your Delphi repertoire. For
example, many Delphi programmers working
with geometric equations calculate the Sine
and Cosine of an angle using:

S := Sin(MyAngle);

C := Cos(MyAngle);

But there’s a faster way! The Math unit has
a procedure called SinCos, which does both
calculations simultaneously: 

SinCos(MyAngle,S,C);

Here, the resulting Sine and Cosine values
are stored in the floating point variables S
and C, respectively. If you need the Sine and
Cosine of an angle, using this function is
twice as fast as calling the Sin and Cos func-
tions separately. Many other handy functions
cover topics such as angle conversions, expo-
nentials, statistics, and finance.

Another handy function is MulDiv, which
is located in the file \Source\Rtl\Win\-
windows.pas. It multiplies two 32-bit values,
then divides the 64-bit result by a third 32-
bit value. Sometimes formulas must work
with very large numbers, thus a formula
s Developer Network Online.
can overflow the bounds of a 32-bit integer.
This function uses 64-bits to hold an inter-
mediate result, thus avoiding the problem.
Also, functions such as Int32x32To64 and
UInt32x32To64 multiply two signed or
unsigned 32-bit values returning a 64-bit
result. Check out Delphi’s online Help for
complete details.
Faster Integer Math
How often do you take an integer and divide
it by eight? Or multiply it by two? You might
be inclined to do something such as:

A := B div 8;  { Integer divide by 8.}
C := D * 2;  { Multiply by 2.}

If the result is strictly integers, you can do this
much faster by shifting the bits in the variable
left or right. Each time you shift an integer left
one bit, you are actually multiplying it by two.
If you shift an integer right one bit, you are
dividing it by two. Bit shifting is a simple
task for the CPU, and it rarely requires
more than a clock cycle or two (as opposed
to a division or multiplication operation
that often requires 10 or more cycles). Each
multiple of two is another bit shift left or
right, but still takes the same amount of
time to complete. So to divide by eight you
would shift right three bits. Here is how
our code would look using bit shifting
instead of multiplication and division:

A := B shr 3;  

{ Shift right 3 bits; same as integer 
divide by 8.}

C := D shl 1;  

{ Shift left 1 bit; same as multiplying by 2.}

Note that this technique only works when
you are multiplying or dividing in multiples
of two, and if the math is on integer values.
Quick Keyboard Shortcuts
Just a quick tip for those who may still be
living in the dark ages. There are many
shortcuts I find indispensable. For example,
selecting a block of text, then hitting



At Your Fingertips
CVI or CVU indents or un-indents the text by a
single character respectively.

Also, there is a rudimentary macro capability in all versions of
Delphi. Hitting CVR turns on macro recording. Then
you can type some text, move the cursor, ect., then hit
CVR to turn the recording off. Now to play back the
macro, you simply hit CVP. Pretty Handy!
Figure 2: Microsoft Knowledge Base provides great information
for developers.
Danger Will Robinson!
A co-worker of mine recently discovered an interesting “fea-
ture” of Windows 95 that deserves a nice neon warning label.
He was using Explorer to organize a large directory of .PAS
files. Once selected, he was going to copy them to another
directory when he inadvertently hit J. Windows then tried
to fire up an instance of Delphi 3 for each of the 78 .PAS
files. Initially it was amusing, but the system was quickly
brought to its knees after about 54 copies of Delphi were run-
ning. Time to hit the big red power button ...
A Wealth of Information
Windows programmers are always looking for “that certain way”
to solve a programming problem. Often it’s just a matter of
knowing where to look. One of the best sources of technical
information on Windows programming is the Microsoft
Developers Network. This is a subscription-based service that
provides developers with quarterly CDs of all sorts of great tech-
nical documents on virtually any topic. A powerful search engine
allows you to quickly find material. 

Microsoft has recently created an online version of this 
service called Developer Network Online at http://www.-
microsoft.com/msdn (see Figure 1). Another great site for pro-
gramming information is the Microsoft Knowledge Base at
http://www.microsoft.com/kb/default.asp (see Figure 2).
Creating an Animated Line
Windows has an interesting procedure called LineDDA that
allows you to create custom line styles. You can even use this
technique to create animated lines.

To begin, take a Timer component and drop it on a form. Set
the Interval to 100. This will control the speed at which the
line will animate.

Now, for LineDDA to work, we need a callback function.
This callback function will define how a line is drawn, pixel
by pixel. For each call to LineDDA, Windows will call the
callback function once for each pixel along the line to be
drawn. For example, if the line is 40 pixels long, the callback
will be called 40 times with the appropriate x and y values for
each of the pixels along the line. All we need to do is come up
with some system to determine if a particular pixel is drawn.

To do this, I am using a byte variable called BitCounter and
repeatedly rotating a single bit through it. Initially, BitCounter
is set to 1. Each time the callback function is referenced, the
bit will be shifted left one position. When it “falls off ” the
left side of the byte (position 8), it’s put back on position 1. 
42 September 1997 Delphi Informant
Then all we do is check to see if the bit is in a position that
tells us we want a pixel painted.

I am using a mask value of 224, which is the left-most three
bits in a byte, i.e. 11100000. When our rotating bit falls in
one of those positions, we paint the pixel blue. If not, we
erase the pixel by painting it the color of the form. Because
we have three bits turned on (the 1’s) in our byte, and five
bits turned off (the 0’s), we’ll get a line that alternates three
pixels on, then five pixels off. Listing Seven on this page,
shows the source code for this technique.

Note also that you don’t need to set pixels in the callback. You
can draw rectangles, circles, small bitmaps — whatever your
imagination can come up with. Remember that the callback
must be very fast and efficient, because it’s being called so
rapidly. Any lengthy processing or painting will quickly slow
the application to a crawl. ∆

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer con-
sultant, and has experience in a number of programming languages. He can be
reached via e-mail at RobertV@csi.com.
Begin Listing Seven — The LineDDA procedure 
unit Unit1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, ExtCtrls;

type
TForm1 = class(TForm)

Timer1: TTimer;

procedure FormCreate(Sender: TObject);

procedure Timer1Timer(Sender: TObject);

private
{ Private declarations }



At Your Fingertips
public
{ Public declarations }

end;
var

Form1: TForm1;

BitCounter: Byte;

CanvasColor: TColor;

implementation

{$R *.DFM}

procedure MovingDots(X,Y: Integer;

TheCanvas: TCanvas); stdcall;
begin
// Shift the bit left one.
BitCounter := BitCounter shl 1;

if BitCounter = 0 then
// If it shifts off left, reset it.
BitCounter := 1; 

// Are any of the left 3 bits set?
if (BitCounter and 224) > 0 then

// Draw the pixel.
TheCanvas.Pixels[X,Y] := clBlue 

else
// Erase the pixel.
TheCanvas.Pixels[X,Y] := CanvasColor;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin
BitCounter := 1;

CanvasColor := Color;

end;

procedure TForm1.Timer1Timer(Sender: TObject);

begin
LineDDA(10,10,80,80,@MovingDots,LongInt(Canvas));

end;

end.

End Listing Seven
43 September 1997 Delphi Informant



44 September 1997 Delphi Informant

Design for Many Applications, etc.
Delphi Tips and Techniques

More At Your Fingertips
Delphi / Object Pascal

By John Gmutza

type
SeriesData = class
private

v_count: Integer;

v_min: Double;

v_max: Double;

v_total: Double;

function get_Ave: Double;

public
constructor Create;

procedure Init;

procedure Add(val: Double);

property Count: Integer read v_count;

property Min: Double read v_min;

property Max: Double read v_max;

property Ave: Double read get_Ave;

end;

...

implementation
...

constructor SeriesData.Create;

begin
Init;

end; { Create }

procedure SeriesData.Init;

begin
v_count := 0;

v_min := 999999999.99;

v_max := 0.0;

v_total := 0.0;

end; { Init }

procedure SeriesData.Add(val: Double);

begin
v_count := v_count + 1;

v_total := v_total + val;

if val < v_min then
v_min := val;

if val > v_max then
v_max := val;

end; { Add }

function SeriesData.get_Ave: Double;

begin
if v_count > 0 then

Result := v_total/v_count

else
Result := 0.0;

end; { get_Ave }

Figure 1: A useful class.
Don’t Design for One Application
A lick and a promise. It’s amazing how many
programmers write code as if they will only use
it once. The illusion is that time is saved by
quickly knocking out a routine, planning to
return to it later to make it a reusable class.
More often than not, however, later doesn’t
come. You end up programming it again some-
where else, or cutting and pasting — if you can.

Create classes instead. Specialized classes 
provide a way to concentrate on narrow bits
of functionality, and can help clarify your
design. Later, you may be able to identify one
of those specialized classes for reuse.

Here’s a classic example: We were computing
sample statistics for a dataset in a graphing
application, without a class — only code
fragments, as required — throughout the
application. After we realized we would also
be computing multiple datasets, two alterna-
tives appeared:
1) use parallel arrays (the quick way), or 
2) create a class to manage the sample 

statistics in an array.

The second alternative results in a useful class,
a clearer design in the graphing application,
and a chance to reuse the class down the road
(see Figure 1). The moral is to think in terms
of encapsulation. The common task of com-
puting summary data was transformed from
many scattered code fragments, to a cohesive
class. Many other concepts can be treated in
the same way.

When to use a class. First, identify the special
case you’re working with, then create the base
class. At first there doesn’t seem to be a moti-
vation for creating a base class and one
derived class; it appears to be extra work. 



More At Your Fingertips
Why not just create one class? Because you’re banking on the
fact that somewhere down the road, quite often in the same
application, you will need to create the second and third derived
classes. And those second and third instances of reuse might help
refine the interface of the base class, further enhancing its ability
to be reused.
Don’t Auto-Create Forms
Although it’s easy and requires no work, don’t let Delphi
auto-create all the forms in your application. It’s a waste of
system resources.

To do this, select Project | Options to display the Project
Options dialog box. On the Forms page, move all forms
except the main form (and data module if you have one) to
the Available forms list box. Then in each unit with a dialog
box, remove the Delphi-generated variable at the end of the
interface section. To access the dialog boxes, you must create
and destroy them explicitly:

var
dlg: TSomeDialog;

Owner: TComponent;

...

dlg := TSomeDialog.Create(Owner);

try
if dlg.ShowModal = mrOk then

begin
...

end;
finally

dlg.Free;

end;

Repeat as necessary for each new form you create.
Use Exception Handling
Don’t be afraid of exception handling. When seemingly innocu-
ous functions such as StrToInt can raise an exception, you don’t
have a choice. We all know where the program goes when no
exception handlers are active. So the benefits of using exceptions
are clear; they localize the effects of errors, and provide an easy
way to recover.

When you have the debugger set to Break on Exception, you
can use 8 to step to the exception handler for that excep-
tion. If you’ve done a good job, you should be close to where
the error occurred, i.e. in the nearest try block. Now you
have a place to set a breakpoint for the next time through. 

My favorite place to use exceptions is when making changes
to a database:

var
Table1: TTable;

try
Table1.Append;

Table1Field1.Value := 1.34;

Table1Field2.Value := 'Delphi';

Table1Field3.Value := Now;

Table1.Post;

except
Table1.Cancel;

Application.HandleException(Self);

end;
45 September 1997 Delphi Informant
This code sequence is quite robust. If anything bad hap-
pens while trying to append a new record, the attempt is
aborted, and a dialog box is displayed with a system-
defined error message.

Another good time to use exceptions is when opening tables:

var
Table1: TTable;

Table2: TTable;

Table3: TTable;

Table4: TTable;

...

try
Table1.Open;

Table2.Open;

Table3.Open;

Table4.Open;

except
Application.HandleException(Self);

end;

A good place to use the finally clause is when performing
dynamic memory allocation. A typical use is creating and
displaying a dialog box:

var
dlg: TSomeDialog;

Owner: TComponent;

...

dlg := TSomeDialog.Create(Owner);

try
if dlg.ShowModal = mrOk then

begin
...

end;
finally

dlg.Free;

end;

This ensures that no matter what goes wrong while running the
dialog box (or after), the dialog object’s memory gets deallocated.
Raise Exceptions When They Make Sense
Now that you’re fielding exceptions in your code, it’s safe to
start raising them as well. In certain TTable event handlers,
such as BeforeAppend and BeforePost, the only way to abort
the append or post operation is to raise an exception:

var
bad_condition: Boolean;

...

procedure SomeClass.Table1BeforePost(Dataset: TDataset);

begin
if bad_condition then
raise Exception.Create('Bad Condition is True');

else
begin

{ Useful stuff }
end;

end;

When writing components for others, it’s good to raise excep-
tions when the component is not prepared to deal with the
current conditions. It’s also good to declare unique classes for
these exceptions.

For example, let’s use a EBadCompClass exception from our
SomeComponent, when it’s passed a control it can’t work with.



type
EBadCompClass = class(Exception);

...

procedure SomeComponent.SomeMethod(ctl: TControl);

begin
if ctl is TEdit then

begin
end

else if ctl is TMaskEdit then
begin
end

else
raise EBadCompClass.Create(

'Unexpected Control Class: ' + ctl.ClassName);

end; { SomeMethod }

Figure 2: Using an exception, EBadCompClass, from our
SomeComponent object.

More At Your Fingertips
If the form designer encounters this exception during devel-
opment, a decision can be made as to whether the form
designer works around it, or the component is enhanced to
handle the unexpected case (see Figure 2).
Use Return Values
Many applications go awry because they continue execution
despite the fact that a crucial function returned a failure code.
The application simply didn’t check for the error condition.
Hours are spent pinpointing these problems, because the errors
they create can be subtle, and can surface far from the code
that started the “ripple effect.” So many hours have been spent
that a market’s been created for software to help developers
track down these errors.

Don’t program as if everything will always work. These
applications aren’t hard to spot. They’re fragile; the user is
given little room for mistakes. This usually results in a nega-
tive experience with the application. “Easy to program” usual-
ly translates into “hard to use,” and not checking return
values is easy.

Don’t fall into this trap! You will be well rewarded for the time
you spend making your applications more robust. Think of it
as reducing the time you’ll spend fixing things. Every function
that can return a fail code will fail under some circumstances.
Otherwise, failure wouldn’t be one of the return values.
Cut-and-Paste Components without
Losing Event Handlers
How many times have you moved a component from one
form to another, only to lose its event handler definitions? I
was getting tired of manually hooking things back together,
when I discovered this trick. Cut-and-paste the event handlers
first, before working on the component. Delphi sees the dec-
larations in the target unit, and leaves all the event handler
properties intact.

Here are the steps:
1) On the Events page of the Object Inspector, identify

all the component’s event handlers you want to cut to
the Clipboard.
46 September 1997 Delphi Informant
2) In the component’s unit, locate the event handlers’ decla-
rations, and cut-and-paste them into the target unit’s
class declaration. Put them in the first section of the class
declaration, where Delphi places declarations that it gen-
erates for you.

3) In the component’s unit, locate the event handlers’ def-
initions, and cut-and-paste them into the target unit’s
implementation section. Be sure to change the class
name to the target’s class name for each event handler.

4) In the target unit, clean up any references to identifiers
used in the source unit. Either eliminate them, or add the
necessary units to the uses statement of the target unit.

5) Finally, cut-and-paste the VCL component from the
source form into the target form. ∆

John Gmutza received a BSCS from Western Michigan in 1985. He has been
solving tough problems ever since. John works for Postek Inc., a database
consulting firm. His interests include guitars, beer cans, and compilers. You can
contact him via e-mail at jgmutza@postek.com.



47 September 1997 Delphi Informant

Is It Really Disabled?

Odds & Sods

By Paul Kimmel

Paul Kimmel is the founder of the Okemos, Michigan-
based Software Conceptions, Inc., which provides profes-
sional, object-oriented software-development consulting
and training services world-wide. Paul is the author of, or
contributor to, several books about Delphi and C++
programming (published by QUE), and is the father of
four children, Trevor, Douglas, Alex, and Noah. Contact
Software Conceptions at softcon@sojourn.com.
Did you ever notice, when you disable a
Delphi Panel or GroupBox, that the controls
on these TWinControl components don’t
appear disabled? Well they are. As an advocate
of providing user-friendly software (to a point),
I like my disabled controls to look disabled.
This may reduce confusion and frustration
among new or harried users of your product. 

You could always write a function that dis-
ables each control individually:

procedure Enabled(const State: Boolean);

begin
Panel1.Enabled := State;

Edit1.Enabled := State;

// and so on.
end;

However, this isn’t very developer-friendly,
nor very extensible. When adding a new
component, you would have to add another
line of enabling/disabling code.

Writing a for loop that iterates through the
controls property will work, and it will solve
the problem of adding a new line of code
each time you add a control:

procedure Enabled(Control: TWinControl;

const State: Boolean);

var
I : Integer;

begin
for I := 0 to Control.ControlCount - 1 do

Control.Controls[I].Enabled := State;

end;

The second version of code will disable all
controls on a panel, form, or group box.
However, if one of these WinControls has
child WinControls, as is the case of a group
box on a panel, then we’re back to square one.
A solution can be found using recursion. Don’t
panic! Delphi 2 and 3 provide a huge stack;
what I have in mind won’t even be noticed.

To ensure all the controls are disabled — in lieu
of the parentage by a disabled control — let’s
modify the previous algorithm slightly:
procedure Enabled(Control: TWinControl;

const State: Boolean);

var
I: Integer;

AWinControl: TWinControl;

begin
for I := 0 to Control.ControlCount - 1 do

begin
Control.Controls[I].Enabled := State;

if (Control.Controls[I] is TWinControl) 

then
begin

AWinControl :=  

(Control.Controls[I] as
TWinControl);

if (AWinControl.ControlCount > 0) 

then
Enabled( AWinControl, State );

end;
end;

end;

The function now steps down into any par-
ent TWinControl recursively. Effectively,
the for loop will bounce out of the func-
tion if there are no controls on the
TWinControl, but I opted for performing
the check before calling the recursive func-
tion. The code would be slimmed down by
an if conditional check, but you would pay
for the price of a function call in the event
there are no child controls. Considering
the nature of a TWinControl, what is the
likelihood that a form, group box, or panel
will have no children?

Applying this technique will ensure — in
one fell swoop — that all disabled controls
look disabled. Plus, it’s extensible and easy
to implement. D



48 September 1997 Delphi Informant

Sentry Spelling Checker Engine 
Wintertree’s Spell-Checker Gets a Thumbs-Up

New & Used

By Alan C. Moore, Ph.D.

Figure 1: SSCE offers several r
functionality.
Spell-checking is an essential component of any word processor. Can you
imagine buying one that didn’t include this vital element? In addition to

word processors, there are quite a few other types of applications that spell-
checking would enhance. An obvious example is a programmer’s editor. 
e

Adding spell-checking to the text-editing
parts of applications may be desirable and
advantageous, but it is hardly trivial. That is,
until the introduction of tools such as the
Sentry Spelling Checker Engine (SSCE) from
Wintertree Software. This product — which
includes a C/C++ and Visual Basic imple-
mentation along with those of Delphi 1, 2,
and 3 — provides all the tools for adding
powerful spell-checking features to any
Delphi application. Furthermore, it provides
a variety of ways to do this, giving you the
flexibility needed in various programming 
situations. Let’s take a detailed look.
A Good Sentry Must ...
What should we expect from a modern spell-
checker? Among other things, it should find
and display misspelled words, suggest replace-
ments, allow us to add new words to a user
dictionary, ignore one or more instances of
special words, and — most importantly —
ady-made options for adding spell-checking
insert our corrections. SSCE includes this
functionality and more. Some of the more
unusual checking options include repeated
words, and reporting or ignoring words with
digits, mixed case, or all letters capitalized (see
Figure 1). SSCE not only allows you to
change these options for a particular spell-
checking session, but also stores user prefer-
ences in an .INI file or (in 32-bit programs)
the Windows registry.

You can access the engine directly through vari-
ous function calls, or use the dialog-box com-
ponent that ships with the product. The latter
provides access to more specialized dialog boxes
for program options, maintaining dictionaries,
and adding new dictionaries. If you are writing
and supporting multi-lingual applications, you
can purchase additional dictionaries for many
of the major European languages, including
Portugese, Danish, Dutch, Finnish, French,
German, Italian, Spanish, and Swedish. There’s
also a medical dictionary available. 

SSCE includes options you may not need for
English-language spell-checking, but are essen-
tial for other languages. Consider the
SSCE_SPLIT_CONTRACTED_WORDS_-
OPT switch. When set, this option allows the
user to check the spelling of sub-words in ad
hoc contracted words such as quell’anno,
checking the spelling of quell and anno, respec-
tively. This would be useful in a French or
Italian language application. What about the
concatenation of words that are common in
German? Again, SSCE has the answer. By set-
ting the SSCE_SPLIT_WORDS_OPT switch
to 1, the English composite word “dumptruck-
driver” would be recognized as three correctly
spelled words combined into one. 



Selecting Text in a Memo 

New & Used
Installing and Learning the Spell Checker
SSCE installs easily and integrates well into the Delphi environ-
ment. It ships with a thorough manual that provides detailed
instructions and sample projects. In order to get SSCE to work
with Delphi 3, recompile the *.pas file, which is a wrapper for
the SSCE DLL. This was not problematic, and by the time you
read this article a Delphi 3 version should be available. When
you install SSCE in Windows, it sets up a group containing a
utility and an example program. Before running these programs,
you need to verify that the main .DLL — SSCE4216.DLL for
Delphi 1 or SSCE4232.DLL for Delphi 2 or 3 — is installed in
the Windows directory. Unfortunately, the installation program
didn’t accomplish this automatically. Following the directions in
the manual, I copied the file manually. (In the new version of
SSCE, this is handled automatically.) After everything is properly
installed, you can quickly get the feel for SSCE’s capabilities and
its standard user interface by running the example program.

SSCE includes WinSqLex, a utility that translates a set of
words in one or more ASCII text files into a compressed
form used by the SSCE. Figure 2 shows this utility applica-
tion and the text file it’s reading, DelpTerm.txt (a list of some
of the controls in Delphi’s Visual Component Library). For a
49 September 1997 Delphi Informant
large list of terms with common suffixes, you can enhance the
compression process by adding a suffix file. WinSqLex can
compress lexicons by replacing common suffixes with special
codes. A compressed lexicon can contain up to 288 suffixes.

Also installed with SSCE, the Dialogs Demo shows the oper-
ation of each built-in dialog box in a very simple setting:
opening, spell-checking, and saving a .TXT file. It provides
access to the preferences dialog box, dictionaries dialog box,
and built-in Help system. Keep in mind that if any user-
interface elements don’t meet your needs, you can create new
elements using the basic SSCE API. However, before we dis-
cuss the details of the SSCE API, let’s take a look at SSCE’s
lexicon structure, which is the heart and soul of this engine.
Lexiconography 101
The Main Lexicon (which is normally compressed) is an
Ignore-Type Lexicon — the words contained are properly
spelled. SSCE includes an American English and British
English version of the Main Lexicon (in both text and com-
pressed versions). The opposite, an Exclude-Type Lexicon, con-
sists of misspelled words. Such a lexicon is useful in removing
certain words (such as slang terms) from other lexicons.
As powerful as Delphi’s Memo components are, consider-
able functionality isn’t implemented. In working with the
SSCE, it’s essential to be able to select appropriate blocks of
text, e.g. words, sentences, and paragraphs. Unfortunately,
such capabilities aren’t included with this engine, nor is it
reasonable to expect that they would be. The example pro-
ject included with this article shows how to implement
such text-selection behavior. Here, we’ll select a sentence in
a Memo component to display elsewhere. 

To set up the application, drop two Memo components
and a Button component on a large form (Height = 368,
Width = 544.) In both memos, edit the Lines property to
remove the default text, and set the ScrollBars property to
ssVertical. For Memo1, set the Top, Left, Height, and Width
properties to 8, 8, 233, and 409 respectively. 

For Memo2, set the Top, Left, Height, and Width properties
to 248, 8, 89, and 409 respectively. Change the caption on
Button1 to Get Sentence. Double-click on the button or
its OnClick event in the Object Inspector to create an event
handler. Add a single line of code, GetCurrentSentence,
to this method. Now, with the form having the focus, 
double-click on the OnCreate event to create another event
handler, and add the following line of code:

Memo1.Lines.LoadFromFile('i:\README.TXT');

Be sure to substitute an appropriate text file that actually
exists on one of your computer’s drives. Rename the unit
file as GetSent.pas, and enter the remaining code which is
available for download in GetSent.pas (see end of article for
details). Now, let’s take a look at some of the code used.

The TMemoInfo record is the key to locating sentences. It’s
used throughout to track the absolute location (AbsOffset),
current line (Line), and current column within that line
(Col ). The procedures GetMemoPos and SetMemoPos find or
change the current cursor location in the memo. Note the
use of the Windows API functions EM_LINEFROMCHAR
and EM_LINEINDEX to find the current line and its cursor
offset. The function FindDelim searches the current line for
an appropriate delimiter (in this instance a period or a blank
line). This function is used by the main functions,
FindPreviousPeriod and FindNextPeriod, to return the begin-
ning of the sentence (SelStart) and its length (SelLength).

One of the challenges in this sort of parsing is tracking
white space, e.g. spaces, tabs, etc. Here we need to
account for a blank character following a period, or a
period that occurs at the end of a line. Many of the key
lines of code are commented, explaining the logic
involved. While this example is fairly involved, it’s still
rather crude, as such examples go. To be truly useful, it
should be expanded to return paragraphs and words. We
could expand our collection of delimiters to include
other forms of punctuation. In fact, our sentence parser
is somewhat incomplete without the more unusual end-
ing punctuation of “?” and “!”. However, this example
provides an excellent starting place.

— Alan Moore



Figure 2: The WinSqLex utility translating a text file into a com-
pressed form for SSCE.

Figure 3: Here the user can pick from several suggested words.

New & Used
Another useful type, the Change-Type Lexicon, has pairs of
words, the first of which is a common misspelling followed
by its correction (i.e. “tehn” and “then”). The limitation of
such a lexicon is that you’re forced to accept the given correc-
tion. What if, in the previous example, you intended to use
the word “ten”? In that case, yet another type, the Suggest-
Type Lexicon, works best (see Figure 3).

SSCE comes with 10 ready-to-use lexicons that can be dis-
tributed with any application. In addition to the four main
lexicons, this collection includes examples of four user types:
Change, Exclude, Ignore, and Suggest. 

In working with lexicons, there is one important caveat dis-
cussed in the manual that is definitely worth repeating. While
you can always compress a lexicon, you can’t convert a com-
pressed lexicon back to its text form. So, anytime a new lexi-
con is created, always keep a copy of its text version. 

We have examined the different kinds of lexicons that provide the
basic data SSCE uses to spell-check documents, but how do we
add such capabilities to our programs? We have two choices:
Work directly with the SSCE API, or use the ready-made dialog
boxes. While the first approach provides a great deal more flexibil-
ity and power, the latter is certainly much easier and is workable
in many circumstances. Let’s take a brief look at each approach.
The Hard Way: Using the Basic SSCE API
When using the SSCE API, you must perform the required
setup and close procedures manually. First you need to open
a spell-checking session with SSCE_OpenSession. Then open a
lexicon by calling SSCE_OpenLex (up to 16 lexicons can be
open simultaneously).

Now you’re ready to get down to the business of checking
the spelling. Select a block of text to check; it can be as
50 September 1997 Delphi Informant
short as a single word, or as long as an entire text file.
Unfortunately, there are very few (if any) built-in tools for
anything between, such as checking a sentence or para-
graph. If you want to make such options available to users,
you’ll have to write the code to return a sentence or para-
graph as the current block. (See the sidebar “Selecting Text
in a Memo” on page 49 for a demonstration of how to
select text below the cursor.)

Having selected the block of text, open it by calling
SSCE_OpenBlock. The declaration of this function is:

function SSCE_OpenBlock(sid: S16; block: SSCE_PCHAR;

blkLen, blkSz: S32; copyBlock: S16): S16;

Confused? I’m not surprised. This declaration comes from the
Delphi file ssce.pas, the main interface to the spell-checking
engine. The declaration in the manual is even more confusing:

S16 SSCE_OpenBlock(S16 sid, SSCE_CHAR *block,

S32 blkLen, S32 blkSz, S16 copyBlock);

If you have programmed in C, the syntax of the last declara-
tion should be familiar. In fairness to Wintertree, the manual
makes a valiant effort to explain everything, and it does a
pretty good job. Because SSCE supports not just Delphi, but
VB and C, the manual should have included comparable
declarations for the other languages. Also, the presentation
of special types is difficult to understand. The reason for
using these types is undoubtedly to provide a basis for multi-
language programming support. It would have been easier to
understand the API declarations if they’d been expressed as
basic Delphi types (Shortint, Long, etc.) rather than abstract
types (S16, U32, etc.).

The parameters to the SSCE_OpenBlock function include the
current Session, a PChar pointing to the memory block, the
block which contains the text to be checked, the initial size of
the text block, and so on. It returns a value greater than or
equal to zero if successful, or a negative value if there’s a
problem (e.g. insufficient memory). 
Working with Blocks of Text
Once you’ve opened a block of text, SSCE provides a num-
ber of functions for checking the text. The main block-



51 September 1997 Delphi Informant

Wintertree’s ThesDB Thesaurus Engine

Figure A: A look at the ThesDB in action.

New & Used
checking functions are listed in Figure 4. Most of these are
quite simple. SSCE_CheckBlock, like SSCE_OpenBlock, is
quite complex with parameters for a session identifier, a
block identifier, various bit-masked word-checking options,
and four options to manage misspelled words and their
replacements. When the end of the block is reached (return
value SSCE_END_OF_BLOCK_RSLT), close everything
with calls to SSCE_CloseBlock, SSCE_CloseLex, and
SSCE_CloseSession. 

This probably sounds rather involved, and it is. However,
imagine the work involved in coding this from scratch. When
you consider there are 14 word-checking options and 10 possi-
ble return codes (problem words or errors), the complexity is
considerable, indicating the tremendous power of this product.
However, to avoid this complexity, there is an easier way ...
The Easy Way: The SSCE Windows API and the 
SSCEVCL Dialog Box
By using the SSCE Windows API, you can access the func-
tions in the included .DLL through a standard dialog box
(SSCEVCL) installed into Delphi’s Component palette.
This dialog box takes care of most of the details I enumer-
ated previously, making it even easier to use this engine. If
you don’t need the control offered by using the SSCE API
directly, you can simplify your use of the spelling-checker
engine considerably by using the SSCE Windows API.

Access to the various dialog boxes (edit lexicons, options, etc.)
is provided by the SSCE Windows API. A good deal of the
engine’s basic functionality is in many of these function calls.
This API provides two spell-checking contexts: one is text-
block based, the other is control based (i.e. TMemo). You can
control the configuration files (with .INI files or the Windows
registry), work with paths, and gather statistics. Best of all,
example files and projects are included to help you learn to use
this API quickly and easily. The built-in dialog box (SSCEV-
CL) has its own Help file included with this product. To my
pleasant surprise, the full .RTF source code for the Help file
was also included. If you customize the dialog box (rather like-
ly, as we all like to add new functionality), you can explain the
added features in an expanded Help file.

Whichever approach you choose — the basic SSCE API or
its Windows API and component — Wintertree has included
In addition to its Sentry Spelling Checker Engine (SSCE),
Wintertree offers ThesDB, a thesaurus engine. While a lexi-
con is simply a list of words, an electronic thesaurus is more
complex in nature. It consists of word categories: synonyms
(words with similar meanings), antonyms (words with oppo-
site meanings), and word classes (parts of speech, such as
noun or verb). For example, to build a programmer’s the-
saurus, you’d include the word “build”. Usually, this word is a
verb fitting the word category build.v. However, programmers
use the word “build” as a noun. So, we’d need a new category,
build.n, to designate this meaning (see Figure A). 
Function Purpose

SSCE_CheckBlock Checks the spelling of a block 
of text.

SSCE_ReplaceBlockWord Replaces the current word in
a block with another word.

SSCE_DelBlockWord Deletes the current word in a 
block.

SSCE_NextBlockWord Advances to the next word in
a block call.

SSCE_GetBlock Retrieves the text in a block.
SSCE_GetBlockInfo Obtains a block’s size, cursor 

location, or word count.
As with its SSCE, Wintertree’s ThesDB provides a low-level
and high-level interface. The low-level interface gives the
most control over access to the inner workings of the
engine and thesaurus. The high-level interface provides a
built-in dialog box and various Windows function calls that
encapsulate a good deal of the engine’s functionality. But
the similarities don’t end there.

If you’re familiar with SSCE, learning ThesDB will be
very easy, almost a déjà vu experience. Here are a few
more similarities:
• Ability to work with text and compressed files.
• Ability to replace misspelled key words.
• Customization features, such as adding or deleting 

words from user thesaurus.
• Built-in distributable Help file with .RTF source code.
• Configuration with .INI file or the Windows registry.
• Detailed printed and online documentation.
• ANSI C source code available for purchase. 

While there are many similarities between the two products,
there is one important difference: The structure of a thesaurus
is a bit more complex than a lexicon. Thus, there are more
details to be concerned about. Fortunately, as with SSCE,
most of these details have been taken care of for you. And
whichever approach you use, high-level or low-level, there’s
excellent documentation and example programs to guide you.

— Alan Moore
Figure 4: The functions for spell-checking a block of text.



New & Used
an outstanding example program. This certainly helps mitigate
the complexity we discussed.
Conclusion
Wintertree’s SSCE is a powerful, well conceived, and flexible
solution for adding spell-checking capabilities to a Delphi
application. With its low-level access to the inner workings of
its engine, and its high-level Windows interface, it adapts to a
variety of programming situations. This includes building cus-
tom spell-checking dialog-box components, adding basic spell-
checking functionality to a Memo or RichEdit component, or
building a full-featured text editor. Its support for a variety of
European languages is excellent. 

Wintertree is currently completing a Unicode version of the
engine. A Java version of the engine should be ready for release
before the end of 1997. Particularly for the developer working
in a C/C++ and/or Visual Basic environment that uses Delphi,
this product is an excellent choice. If you’re writing applications
for various platforms other than Windows, the ANSI C source
code is available for modification and compilation on any plat-
form that has a C compiler.

For any Delphi programmer looking for a full-featured, pow-
erful, yet flexible spell-checking solution, I recommend this
product highly. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\SEP\DI9709AM.

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he special-
izes in writing custom components and implementing multimedia capabilities in
applications, particularly sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.
52 September 1997 Delphi Informant
Wintertree’s Sentry Spelling Checker Engine
(SSCE) is a complete solution for adding spell-
checking functionality to any Delphi application.
It includes a low-level interface to the spelling
checker engine, and a high-level Windows pro-
gramming interface with built-in dialog boxes
and a Delphi dialog-box component. The major
lexicon types are included and can be distrib-
uted with applications using SSCE. Wintertree
also offers ThesDB, a thesaurus engine similar
in design and construction to SSCE.

WWiinntteerrttrreeee  SSooffttwwaarree
69 Beddington Ave.
Nepean, Ontario, Canada 
K2J 3N4
PPhhoonnee:: (800) 340-8803 or (613) 825-6271 
FFaaxx:: (613) 825-5521
EE--MMaaiill:: info@wintertree-software.com
WWeebb  SSiittee:: http://wintertree-software.com
PPrriicceess:: Sentry Spelling Checker Engine,
US$299 (C/C++, Delphi, and Visual Basic);
and Sentry Spelling Checker Engine source code,
US$799 (ANSI C). ThesDB Thesaurus Engine,
US$499 (C/C++, Delphi, and Visual Basic);
and ThesDB Thesaurus Engine source code,
US$1,499 (ANSI C).



53 September 1997 Delphi Informant

InfoPower 3
Still the One to Beat

New & Used

By Bill Todd
S ince its first version, InfoPower from Woll2Woll Software has been the
one “must have” add-in product for anyone developing database appli-

cations in Delphi. In its third release, InfoPower again brings a host of new
features to make developing database applications faster and easier.
What’s New
One of the most exciting new components in
version 3 is the TwwRecordViewDialog com-
ponent. One of the most useful characteris-
tics of Delphi’s grid control is that it dynami-
cally adapts to the dataset it’s connected to,
so you can easily use a single form with a sin-
gle grid to edit multiple tables. With
TwwRecordViewDialog, you get this same
flexibility with a form — simply connect this
component to any DataSource, call its
Execute method, and it dynamically builds a
data entry form for you.

Figure 1 shows a general-purpose local table
browser and editor that uses the TwwDBGrid
component. After installing InfoPower 3, I
dropped a TwwRecordViewDialog on the form,
set its DataSource property, and added a call to
its Execute method to the grid’s OnDoubleClick
event handler. Now I can double-click the grid
and see the current record displayed in a form.

Figure 2 shows some of the flexibility of
TwwRecordViewDialog. In this example, the
Navigator and buttons have been turned
off and the form is being shown modeless-
ly. Its style has also been changed from
horizontal to vertical to provide a different
arrangement of the edit controls.

You get even more control over the form’s
appearance because the form will automatically
use any controls that are defined for a
TwwDBGrid that is bound to the same dataset.
If the grid includes InfoPower’s combo box,
spin edit, rich edit lookup combo, or check
box controls, the same controls will automati-
cally be used for the same fields in the record
dialog. Any picture masks you have defined for
the dataset will also be applied when you use
RecordViewDialog to edit data. If you need a
custom menu for the dialog, simply drop a
TMainMenu component on the form from
which you will call the RecordViewDialog, and
set the RecordViewDialog’s Menu property to
that menu item.

As with TwwDBGrid, RecordViewDialog has
a property you can select at design time to
set picture masks and change the order in
which fields are displayed. This is a real
time-saver for any generic editing task, such
as lookup tables, where a great deal of spe-
cialized functionality is not required.

Figure 3 shows another example of a
RecordViewDialog that includes a custom
menu and a custom font for the field labels. It
also includes another new jewel in InfoPower
3, the TwwDBRichEdit component. Of
course, this component has all the features
found in the Borland rich edit controls, but it
also lets the user display an editing window
with all the features of a basic word processor,
as shown in Figure 4.



Figure 1: A form generated by TwwRecordViewDialog.

Figure 2: A different form created by changing properties.

New & Used
The editing window includes a toolbar, format bar, and sta-
tus bar, which the user can turn on or off at will. Of course,
you can set which bars are visible by default when you cre-
ate your application. In addition, the rich edit component
includes the following features:

Customizable printer margins
Paragraph indentation
Tab settings
Page layout
An extensive pop-up menu of editing and formatting
functions
Search and replace
54 September 1997 Delphi Informant
InfoPower 3 includes two other new
components, TwwStoredProc and
TwwClientDataSet. Both can be
attached to TwwDBGrid, and both sup-
port embedded controls and picture
masks (as did the Table, Query, and
QBE components in prior versions).
Most of the controls from previous ver-
sions of InfoPower have new features.
All the dataset components now have
properties that let you display an hour-
glass while records are being filtered,
thus giving the user the ability to cancel
a filter by pressing E. This is a wel-
come addition; filters that make a
sparse selection from a large table can
be slow. Not only does pressing E
stop the filter, it also triggers an
OnFilterEscape event so you can attach
code to this action. Another slick new
feature is the ability to filter on lookup
fields in a dataset.

TwwDBGrid, one of the most powerful
components in InfoPower since the first
version, has a number of new features.
There are two new options in the
MuliSelectOptions property. The first
lets you configure the grid so that click-
ing on a record without holding down
C will unselect all records in the cur-
rent selection, and select only the
record you clicked. The second enables
S-select support, so you can easily
select a contiguous group of records.
You can also select or unselect all
records in code using the new SelectAll
and UnselectAll methods. When multis-
elect is enabled in a grid, the new
OnMultiSelect event is triggered each
time a user selects or unselects a record.
This lets you easily write code that con-
trols whether the user can select the
record or not, or take any other action
you wish.
Setting the EditCalculated property to True lets you edit calcu-
lated fields or lookup fields with a single line of code. Now
you can embed the TwwDBEdit control in the grid so users
can edit memo fields directly in the grid — they don’t have to
display a pop-up editing window to change the memo text, as
was necessary in previous versions. Another nice feature is that
you can now determine at design time whether the grid will
use the dataset’s TFields properties or its own selected property
settings. This lets you customize the grid and have the settings
stored with the grid, not the dataset, if you wish.

Another popular component with many new features is
TwwFilterDialog, which lets users set their own filter crite-



New & Used
ria. A new feature is support for “and”, “or”, and “null” key-
words within a field. For example, you can now search for
records whose state is CA or WA, or a ZIP code field that is
null. There is also a new option that adds a records not

matching checkbox to the dialog box. With this, users can
enter selection criteria and see all records that do not match
the criteria. Also new is the ability to search on calculated,
linked, and lookup fields. One of the problems with filters
in the past has been that they can be slow because they do
not use indexes. If you are filtering on TwwTable and set the
new FilterOptimization property to True, the filter will use
indexes to speed the selection process.

The DBLookupCombo and DBCombobox components also
have several new features. One feature they share is Quicken-
style incremental searching. Simply set the ShowMatchText
property to True and, as users enter text into the edit box, the
first matching choice will display automatically. Another wel-
come feature for the DBLookupCombo is the AllowClearKey
property. If set to True, and the Style is set to csDropDownList,
users can clear the current selection by pressing either D or
B. However, perhaps the most important enhancement
to the DBLookupCombo is that it now accepts TwwQuery,
TwwQBE, and TwwClientDataSet components as the lookup
source. Now you can use parameterized queries or remote
datasets as the source of the lookup list.
If You’ve Never Used InfoPower
If you haven’t used InfoPower, here’s a look at some of the
other components it provides:

A Table component that fully supports Borland Database
Engine (BDE) filters, including the ability to change the
filter criteria on-the-fly at run time, a Pack method to
pack both Paradox and dBASE tables, and a wwFindKey
method that is faster against SQL tables than Delphi 1’s
FindKey method.
A QBE component that fully supports QBE queries and
55 September 1997 Delphi Informant

Figure 3: A RecordViewDialog with a custom menu and 
rich edit control.
includes an AnswerTable property to let you easily save
your result set to disk, as well as an AuxiliaryTables prop-
erty so you can have the query create Paradox-style
KeyViol, Changed, Inserted, and Deleted tables in the
user’s private directory.
A data-aware grid component that includes the ability
to display a cell as a checkbox, combo box, lookup
combo box, custom dialog box, or rich edit control;
display the text of a memo field in the grid; double-
click a memo field in the grid and display a pop-up
memo editor; and display multiple tables in a single
grid and define non-scrollable columns in the grid.
A variety of high-performance search controls that
include incremental, exact match, starts with, and sub-
string searching.
A customizable pop-up memo field editor you can use
to edit memo fields displayed in any control.
A data-aware rich edit control that includes a pop-up
WordPad-style editor.
A DBComboBox component with Quicken-style
search and fill, as well as the ability to display one set
of values but store a different set in the underlying
table.
A DBComboDialog component that includes an ellip-
sis button and an event that is triggered when the user
clicks the button. This allows you to display custom
dialog boxes to help users edit a field in a table.
A DBLookupCombo component that lets you display
any number of fields in the drop-down list; display
column separators in the drop-down list; display 
column headings in the drop-down list; control
whether the drop-down list grows to the left or right;
lets you control by which column the drop-down list is
sorted; lets users incrementally search the drop-down
list by typing into the field; supports Quicken-style
incremental fill-in; and displays a description instead
of a code, even though the code is stored in the table.
Figure 4: TwwDBRichEdit’s editing view.



# Any digit.
? Any letter, either upper or lower case.
& Any letter. Lower-case letters are converted to 

upper case.
~ Any letter. Upper-case letters are converted to 

lower case.
@ Any character.
! Any character. Letters are converted to upper 

case.
; Treat the next character as a literal, not a 

mask character.
* Repeat count. *# means any number of 

numbers. *5# means five numbers.
[ ] Anything in square brackets is optional.
{} Group of alternatives. {Y,N,U} means the 

user must enter either Y, N, or U.

Character    Description

Figure 5 (Top): InfoPower picture characters. 
Figure 6 (Bottom): The Select Fields dialog box.

Figure 7 (Top): The Lookup Picture Mask dialog box. 
Figure 8 (Bottom): The Design Picture Mask dialog box.

New & Used
You can also use this component without binding it to
a data table.
A DBLookupComboDialog component with all the fea-
tures of the DBLookupCombo component, but instead
of a drop-down list, this control displays a dialog box
with the lookup table displayed in a customizable grid.

Picture Masks
One of the most exciting and useful features in InfoPower is
Paradox-style picture masks for controlling what users can enter
into a field.

While Delphi’s edit masks provide a simple system of templates
to control user input, InfoPower’s picture masks provide a
mask language that supports automatic completion, multiple
masks for the same field, and much more. If you are frustrated
with the limitations of edit masks, try picture masks — you’ll
never go back. The table in Figure 5 shows the picture charac-
ters used with InfoPower picture masks.

There are several ways to enter pictures when you use
InfoPower components, but perhaps the easiest is clicking on
the PictureMasks property of a TwwTable component to dis-
play the Select Fields dialog box (see Figure 6).

Clicking the ellipsis button in the Picture Mask field of this
dialog box leads to the Lookup Picture Mask dialog box shown
in Figure 7. This dialog box lists a number of useful pictures
that have already been built; simply select the one you want.
56 September 1997 Delphi Informant
If you need to design a custom picture, click the Design Mask

button in the Select Fields dialog box to display the Design
Picture Mask dialog box shown in Figure 8.

For example, suppose you need a picture that will let users
enter in a field either a valid US five- or nine-digit ZIP
code or a Canadian postal code. Start by typing the 
picture {#&# &#&,#####[-####]} into the Picture Mask
field. Now click the Verify Syntax button to verify that your
picture is syntactically correct. Then type sample values
into the Sample Value field to make sure your picture
works as intended.

If you think you’ll use this picture again, click the Save Mask

button to add it to the database of pictures displayed in the
Lookup Picture Mask dialog box shown in Figure 7. This is
just one example of a mask that is impossible to create in
Delphi without InfoPower.

Another good example of the superiority of InfoPower’s
pictures over Delphi’s edit masks is the picture
#[#]/#[#]/##[##] for a simple date. Not only does this
picture allow you to enter either a one- or two-digit month
or day, it also lets you enter either a two- or four-digit year.
If you’ve ever tried to use a Delphi edit mask for a date,
you have probably discovered that it puts the two literal
characters (the slashes), into the field as soon as it gets



New & Used

Figure 9: The TwwFilterDialog in action.
focus. You’ve also discovered you
cannot get rid of the literal charac-
ters if you then decide to leave the
field blank. InfoPower does not
insert the literal characters until you
reach the point in typing your value
where they appear. If you highlight
the field and delete the value, the
literal characters disappear, so you
can easily leave a field blank.

As with all other InfoPower features,
pictures work identically in all ver-
sions of Delphi. They also apply
whether the data is entered by the
user through a form or you assign a
value to a field in code. 

You can allow a user to leave a field
that contains an invalid value by set-
ting the AllowInvalidExit property to

True, and you can control whether the pictures are used for
interactive editing by setting the UsePictureMask property.

InfoPower controls also include OnCheckValue and
OnInvalidValue events to let you control what happens
when the user enters an invalid value. Using these events,
57 September 1997 Delphi Informant
you can determine if
the value entered by
the user is valid or
not, and if it is
invalid when the user
tries to post the
record you can dis-
play an error message
that identifies the
invalid field. Because
the OnInvalidValue
event identifies the
offending field, you
could also change the
field’s color and move
focus to the field. 
Filter Dialog
The TwwFilterDialog
component gives end
users an easy way to
filter or query a
dataset on multiple
fields. To use it, sim-
ply drop the
FilterDialog compo-
nent on your form,
set its DataSource
property, and provide
a button or menu
choice to call its
Execute method.
Calling Execute displays the dialog box shown in Figure 9.

Selecting records is done in one of two ways (which you specify).
If the dataset being searched is a TwwTable or TwwQBE, then a
BDE filter is applied. If the dataset is a TwwQuery, you can
either filter the query result set or let the FilterDialog modify the
WHERE clause of the query and re-execute it to select the
records. You can set the caption of the dialog box, as well as for
which fields the user can enter selection criteria.

The View Summary button lets users see the field or fields for
which they have entered selection criteria. The By Value and
By Range tabs let users enter a single value, or a range of val-
ues, to search for. Entering a single value lets users choose to
search for an exact match, a record that starts with the search
value, or a record that contains the search value anywhere in
the field. Users can also select a case-sensitive search.

Conclusion
InfoPower continues to be the single-most valuable add-in
product for the Delphi database application developer. It will
let you develop programs with far more features faster than any
other tool I know. D

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. He is a Contributing Editor of Delphi
Informant; co-author of Delphi 2: A Developer’s Guide [M&T Books, 1996],
Delphi: A Developer’s Guide [M&T Books, 1995], Creating Paradox for
Windows Applications [New Riders Publishing, 1994], and Paradox for
Windows Power Programming [QUE, 1995]; and a member of Team Borland,
providing technical support on CompuServe. He has also been a speaker at every
Borland Developers Conference. He can be reached on CompuServe at
71333,2146, on the Internet at71333.2146@compuserve.com, or at 
(602) 802-0178.
In its third release, InfoPower contin-
ues to be a “must have” add-in product
for Delphi developers creating data-
base applications. A host of new fea-
tures make developing database appli-
cations faster and easier.

Woll2Woll Software
2217 Rhone Dr.
Livermore, CA 94550

Phone: US (800) 965-2965;
International (510) 371-1663
Fax: (510) 371-1664
CompuServe: 76207,2541
CompuServe Forum: Go Woll2Woll
E-Mail: sales@woll2woll.com
Web Site: http://woll2woll.com
Pricing: InfoPower is available for
US$199; source code is available for
an additional US$99. Contact
Woll2Woll for InfoPower upgrade
pricing information.



TextFile

Delphi 2 Developers’ Solutions
I’ve always been happy with
Borland’s documentation of
its programming tools, start-
ing with the one-volume
manual for Turbo Pascal 3.
Today, things are more com-
plicated. Delphi 3 comes
with a large box of reference
books, including the expand-
ed Visual Component Library
(VCL) Reference (which now
requires two volumes and
nearly 1,700 pages of text).
Now that should meet the
needs of most programmers,
right? Well, perhaps quite a
few, but consider some of
the following criticisms that
could be made:  The VCL is
a hierarchical structure, so
why doesn’t Borland arrange
its VCL reference in a way
that reflects that structure,
rather than alphabetically? I
would like to learn more
about the support classes
(TCollection, TStrings, etc.)
that are used in many of the
components; why doesn’t
Borland put them in the
same section of its reference?
The code examples that
Borland does include get me
started on using these classes
and components quickly, but
I wish there were more. I
could go on, but you get the
idea.

If you’ve used Delphi for a
while, and are familiar with
the VCL structure, then
Delphi 3’s VCL Reference
probably meets your needs.
If not, then you should con-
sider Waite Group Press’
Delphi 3 SuperBible by Paul

Delphi 3 SuperBible
58 September 1997 Delphi Informant
Thurrott, Gary Brent,
Richard Bagdazian, and
Steve Tendon. It begins with
an excellent introduction,
then launches into a full dis-
closure of the contents of the
VCL, beginning with
TObject. (Borland buries this
most basic of all constructs
midway through Volume II).
SuperBible then presents the
most basic objects, including
classes used with .INI files
and the Windows registry
(TIniFile, TRegistry,
TRegIniFile), TList, TThread,
and the Exception classes.
The latter are dealt with
rather extensively in their
own 12-page chapter.

The remaining four sec-
tions of the book are closely
related to the structure of
the VCL, covering persis-
tent objects (TPersistent and
its descendants), compo-
nents, non-windowed con-
trols, and windowed con-
trols. A careful examination
of the TPersistent entry and
a comparison to the similar
entry in the VCL Reference
shows one of SuperBible’s
limitations — its acknowl-
edged emphasis on the
more commonly used prop-

“Delphi 3 SuperBible”
continued on page 60
At first glance, Delphi 2
Developers’ Solutions appears to
be a collection of tips and
techniques, similar in nature
to its predecessor, Borland
Delphi How-To (see Larry
Clark’s review in the January
1996 issue of Delphi
Informant). On closer exami-
nation, I found a carefully
thought-out structure where
most of the 80 “how-to’s” are,
in fact, building blocks of
some impressive sample appli-
cations. Beginning with three
utility programs in the first
chapter, developing a full-
featured file manager in the
next few chapters, and con-
cluding with an in-depth
exploration of Internet pro-
gramming, Solutions is a tour
de force of programming prob-
lems and their solutions. 
Written by Nathan Wallace

and Steve Tendon, Solutions
has a clear and consistent style.
The “how-to’s” in each chapter
are steps in creating a fairly
elaborate Windows applica-
tion. At the beginning of each
chapter, the authors provide a
list and a capsule summary of
the “how-to’s” that follow.
Each begins with a statement
of the problem (in real-world
terms), a brief overview of the
technique to solve the prob-
lem, and a step-by-step
description of how to develop
the code needed. Refreshingly,
you get all the code. (This is
not one of those books that
provides a few snippets of
code, then refers you to the
CD-ROM.) In addition, the
CD-ROM includes all the
code, as well as several collec-
tions of custom components
and other utilities and files.
The target audience is inter-

mediate to advanced. How-
ever, the authors note that
even a relatively new Delphi
programmer could benefit
from studying the code. 

Most of the book is devoted
to building two major applica-
tions: a file manager and an
Internet control center. The
chapters devoted to the file
manager cover the techniques
for building a Windows 95-
style graphical file manager
with drag-and-drop support;
specialized mouse and key-

“Delphi 2 Developers’ Solutions”
continued on page 61



Delphi 3 SuperBible (cont.)

TextFile

Delphi 2 Developers’ Solutions (cont.)
erties and methods of a class. In this instance, SuperBible
provides an excellent description of the TPersistent class
and its most important method, Assign. However, it does
not provide any information on the protected methods,
AssignTo or DefineProperties, as the VCL Reference does. So,
don’t put your Delphi 3 manuals away yet.

An important difference between the two references is
the way they explain a control’s properties. Not surprising-
ly, there is overlap and similarity in the information itself.
The difference lies in the approach to presenting that
information. While the VCL Reference rarely uses code
examples to show a property’s uses, such examples are
common in SuperBible. And while the VCL Reference is
careful to restrict its discussion to closely related classes
(while sometimes providing more information about
these), SuperBible attempts to anticipate some of the other
techniques that might be of interest to a programmer
using the property in question. Let’s examine one example:
the OnKeyUp event of TWinControl.

The OnKeyUp event is handy if you need to monitor the
release of keystrokes, then take some kind of action based
upon the key or combination of keys just released. The
entry in SuperBible provides a nice example of how to cre-
ate a specialized KeyUp event handler. You are reminded
that the Chr standard function can be used to convert the
Key parameter to a character; then you are referred to the
example code. Unfortunately, the Chr function is not used
in the stated example, although it is used in the earlier
OnKeyDown example. (With the current desire of publish-
ers to get new programming books on the shelves as soon
as possible, I don’t think you will find many books that
are totally free from this kind of error.) While the VCL
Reference doesn’t provide sample code for this event, it
does provide additional information that might be needed
by the advanced programmer, including the type defini-
tions for TShiftState and TKeyEvent. 

As with many Delphi books I have read, I must take issue
with the user level suggested by the publisher, here specified
as Intermediate to Advanced (emphasis on the latter.) My
assessment is that this book would be of least interest to the
more advanced Delphi programmers (who should find
Borland’s VCL Reference more than adequate), but would be
of greater use to relatively new Delphi programmers who
want to quickly learn the structure and uses of the VCL. If
you want to explore the essentials of the VCL and have an
excellent resource to guide you, then I highly recommend
this book.

— Alan C. Moore, Ph.D.

Delphi 3 SuperBible by Paul Thurrott, et al., Waite Group
Press, 200 Tamal Plaza, Corte Madera, CA 94925, 
(800) 368-9369 or (415) 924-2575.
ISBN: 1-57169-027-1
Price: US$54.99
(1,312 pages, CD-ROM)
59 September 1997 Delphi Informant
board functionality; printer capabilities; a Help file; and tech-
niques for creating thumbnails of graphics files, then using them
in the file manager. The Internet control center is the focal point
of the last three chapters. They provide the techniques needed to
use Winsock, perform FTP operations, how to connect to —
and use — the various UseNet Newsgroups, and add e-mail
capabilities to the application.

One of the strongest aspects in Solutions is the attention given
to error handling. For instance, in their discussion of the file
manager, the authors re-introduce some of the venerable Pascal
file-handling procedures. For example, how many of you DOS
veterans remember the FindFirst and FindNext procedures?
These procedures, and others, are used in this file manager. To
provide complete error handling, file-manipulation calls are
enclosed in try..except blocks to provide complete error infor-
mation when something goes wrong (as opposed to the use of
Boolean function returns in some of the newer file routines that
merely tell you it didn’t work — not why).

Besides the file manager and Internet control center, there
are other interesting and useful tools discussed in other sec-
tions of the book. For example, the first chapter shows how to
build three utilities: a Windows screen saver, a Windows wall-
paper changer, and an application launcher in the style of a
NeXT taskbar. Two other chapters discuss interesting aspects
of database programming, such as interfacing with the BDE,
performing a phonetic search with the Soundex algorithm,
and using the InterBase server.

Solutions has many virtues — and only a few problems. The
book promises to offer components to make the functionality of
these projects readily available. In fact, many of the “how-to’s”
conclude with a discussion of such components. Unfortunately,
these components are nowhere to be found. After visiting Waite
Group Press’ Web site, I discovered the reason was that the pub-
lisher was “unable to acquire all of the permissions needed to
put these components on the CD-ROM.” This was a disap-
pointment, but not a big deal. All, or most, of the code neces-
sary to wrap such functionality into a component is there. 
The other criticism is a matter of personal preference: While I

appreciated having the full source code in the book, I really did-
n’t expect or need to see page after page of form-file text. The
text of the first .DFM file in Chapter 9 goes on for 25 pages. Is
there anyone who is actually going to type in all of this? Please,
just tell me where to drop the components and what their non-
default property values are!

While the shortcomings are, at most, mildly annoying, the
book’s strengths are considerable. The authors provide excel-
lent models for building large applications with full error
checking, particularly for relatively newer programmers.
Delphi 1 programmers, or those working with various Delphi
versions to support both 16- and 32-bit environments, will
appreciate the care given to explicating Delphi 1 issues.
Despite the title, a handful of the projects are specific to
Delphi 1, and are intended to provide some of the functional-
ity of Delphi 2 for its predecessor. 

In sum, I highly recommend this carefully crafted and thor-
“Delphi 2 Developers’ Solutions”

continued on page 60



Delphi 2 Developers’ Solutions (cont.)

TextFile
oughly delightful programming treatise for serious Delphi
developers. It’s a must for those who need to enter the Internet
programming arena. 

— Alan C. Moore, Ph.D.

Delphi 2 Developers’ Solutions by Nathan Wallace and Steve
Tendon, Waite Group Press, 200 Tamal Plaza, Corte Madera,
CA 94925, (800) 368-9369 or (415) 924-2576.
ISBN: 1-57169-071-9
Price: US$59.99
(892 pages, CD-ROM)
60 September 1997 Delphi Informant



File | New
Directions / Commentary

Delphi 3: The Ultimate ActiveX Factory? 
Delphi 3 and ActiveX control development are synonymous — especially if you believe Borland’s
marketing material. Just about anyone who can point-and-click can create an ActiveForm, and view

it from within a Web browser. But how much substance is behind this hype? Is Delphi truly a foundry for
developing professional-strength ActiveX controls? 
When Delphi 3 was released, I wanted
to find out. Not only was I curious
about bending this ActiveX envelope,
but I had a legitimate need as well.
Specifically, I used Delphi 3 to create a
new breed of ActiveX control called a
design-time control. Unlike typical
ActiveX controls you use within a Web
browser, Delphi, or Visual Basic,
design-time ActiveX controls don’t sur-
face at run time; rather, they are
employed exclusively at design time to
create content for Web pages.
(Technically speaking, a design-time
control is an ActiveX control that has
the IActiveDesigner interface imple-
mented.) After spending a great deal of
time and energy on this task, I decided
to use this month’s column to share my
impressions of using Delphi to create
ActiveX controls. 
Delphic Approach. To begin, Delphi 3
does to ActiveX what Delphi 1 did to
RAD development: It provides a natur-
al, intuitive approach to ActiveX control
development creation. This was no
small task, mind you. Component
development is nothing new to Delphi,
but ActiveX has a completely different
architecture and philosophy behind it
than Delphi’s VCL architecture. Thus,
Borland engineers faced a supreme chal-
lenge when it came to ActiveX: how to
bridge the “Delphi way” of creating
components with the ActiveX specifica-
tion. For the most part, Borland suc-
61 September 1997 Delphi Informant
ceeded in this attempt. Experienced
VCL component developers will
undoubtedly agree, as the base object
for an ActiveX control is a VCL. In
sum, with its intuitive Type Library edi-
tor, inline code instructions, and online
Help, Delphi 3 enables able VCL com-
ponent developers to create standard
ActiveX controls with minimal knowl-
edge of the ActiveX architecture. 
Off the Beaten Path. But that isn’t the
end of the story. The operable word here
is “standard,” because once you venture
off the beaten path, you’re often on your
own. As a result, serious ActiveX devel-
opment in Delphi can become a real
trial-and-error process. This isn’t neces-
sarily due to Delphi itself, but to the fact
that little documentation and few exam-
ples exist on implementing ActiveX
interfaces with Delphi 3. (Frankly, I’m
flabbergasted that Delphi 3 shipped
without a serious ActiveX demo.) I’m
hopeful this will change in the coming
months as more is written about Delphi
from third-party sources. 

Given Microsoft’s dominance in
Windows programming, Delphi develop-
er’s may often feel like they’re going
against the grain when creating ActiveX
controls. That’s most certainly my case:
Even after faithfully monitoring Delphi’s
activex.writing newsgroup and talking
with Borland, I discovered no one else
used Delphi to create design-time con-
trols. So, as I plodded ahead on my own,
I had to hitch a ride with Microsoft.
Because much of the documentation on
ActiveX is Microsoft’s, I found myself
translating Visual C++ examples into the
Object Pascal equivalent. In the end, I
probably spent as much time in the
Visual C++ IDE working with C++ sam-
ples as I did within Delphi. 

There’s a downfall to forging your own
ground. When you encounter a problem,
it can be difficult to know when you or
your tool are wrong. Only after many
hours of frustration and confirmation
from Borland did I realize that the source
of my difficulty was due to two bugs in
the ActiveX.pas source file in its declara-
tion of the IActiveDesigner interface. 
The Old Stand-By. Finally, in spite of
these Lone Ranger issues, I still prefer
using Delphi than Visual C++ to create
ActiveX controls. Delphi’s ActiveX pro-
gramming prowess lies not in its wiz-
ardry, but in its ability to simplify
Windows programming at the code
level. And ultimately, that is what gives
Delphi 3 the edge in terms of ActiveX
control development. ∆

— Richard Wagner

Richard Wagner is Chief Technology Officer
of Acadia Software in the Boston, MA
area, and Contributing Editor to Delphi
Informant. He welcomes your comments at
rwagner@acadians.com.


	Table of Content
	Delphi Tools
	Speech Solutions Ships Speech Recognition for Delphi
	RT Registration Control Available for Delphi 3
	DesignSystems Announces DSAppLock 1.1 for Delphi
	Multi-Edit Offers Delphi 3 Integration

	Delphi 2 Java Makes Delphi to Java Conversions Possible
	Tamarack Supports Delphi 3 with Rubicon 1.4

	Newsline
	Borland Completes Equity Financing; Raises US$25 Million
	New IntraBuilder Client/Server 1.5 Ships
	Borland Announces Borland C++ Builder for IBM AS/400
	Free Delphi 3 Books and CD Giveaway

	On The Cover
	Multi-tier Architecture
	The Car Type Library
	Miata: An In-Process Server
	Hummer: An Out-of-Process Server
	MackTruck: A Remote Server
	Speedway: Testing Each Car
	Conclusion
	Listing One — Miata.pas
	Listing Two — Hummer.pas
	Listing Three — MackTruck.pas
	Listing Four — Main.pas


	Informant Spotlight
	Introducing Experts
	Using the Expert Tool Kit
	Expert DLL
	Expert Module
	Components
	Road Test
	Inside the Expert Tool Kit
	Conclusion

	On the Net
	The Rules of MIME
	Content-Type
	Content-Transfer-Encoding
	Content-ID
	Content-Description
	Encoding base64 Message Parts
	Recognizing and Decoding
	Bringing It All Together

	DBNavigator
	Creating Master-Detail Reports
	Creating Composite Reports
	Creating a Custom Report Previewer
	Creating Reports at Run Time
	Version 1 vs. Version 2
	Conclusion

	Greater Delphi
	Shutting Down
	Removing Old Versions
	Recovering Limbo Transactions
	Maintaining Indexes
	Backing Up and Restoring
	Validating and Repairing Your Database
	Conclusion

	Columns & Rows
	How the BDE Manages Network Locking
	Table Locks
	Default Locks for Operations
	Placing Table Locks under Program Control
	When Are Table Locks Not Placed?
	Record Locks
	Transaction Support
	Multi-User Limits
	Dealing with Problems

	Delphi Reports
	A “Quick” Recap
	Column Definitions
	Maintaining Definitions
	The Column Editor
	Showing Off
	Persistent Columns
	Columns in Action
	Conclusion
	Listing Five — Saving column definitions
	 Listing Six — Reading column definitions


	At Your Fingertips
	Handy Math Functions
	Faster Integer Math
	Quick Keyboard Shortcuts
	Danger Will Robinson!
	A Wealth of Information
	Creating an Animated Line
	Listing Seven — The LineDDA procedure


	More At Your Fingertips
	Don’t Design for One Application
	Don’t Auto-Create Forms
	Use Exception Handling
	Raise Exceptions When They Make Sense
	Use Return Values
	Cut-and-Paste Components without

	Odds & Sods
	New & Used
	A Good Sentry Must ...
	Selecting Text in a Memo

	Installing and Learning the Spell Checker
	Lexiconography 101
	The Hard Way: Using the Basic SSCE API
	Working with Blocks of Text
	Wintertree’s ThesDB Thesaurus Engine

	The Easy Way: The SSCE Windows API and the
	Conclusion
	Fact File


	New & Used
	What’s New
	If You’ve Never Used InfoPower
	Picture Masks
	Filter Dialog
	Conclusion
	Fact File


	TextFile
	Delphi 3 SuperBible
	Delphi 2 Developers’ Solutions

	File I New
	Delphic Approach.
	Off the Beaten Path.
	The Old Stand-By.


